首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Ceramics International》2022,48(10):13862-13868
In the development of dielectric ceramic materials, the requirements of miniaturization and integration are becoming increasingly prominent. How to obtain greater capacitance in a smaller volume is one of the important pursuits. In this paper, lead-free (1-x)NaNbO3-xBi(Ni1/2Sb2/3)O3(xBNS) with high recoverable energy storage density (Wrec) and relatively high energy storage efficiency(η) were prepared by a solid state sintering method. Bi(Ni1/2Sb2/3)O3 was introduced into the Sodium niobate ceramics(NN)-based ceramics to reduce the sintering temperature and increase the maximum breakdown field strength (Eb). Finally, 0.15BNS achieved a high Eb of 460 kV/cm, Wrec of 3.7 J/cm3 and η of 77%. In addition, the sample maintained excellent stability in the frequency range of 1–120 Hz. And the 0.15BNS ceramics also exhibited high power density (PD = 36.4 MW/cm3), large current density (CD = 520.8 A/cm2) and relatively fast charge-discharge rate (t0.9 = 1050 ns). These results demonstrate the potential application value of xBNS ceramics in energy storage capacitors.  相似文献   

2.
《Ceramics International》2022,48(18):26466-26475
Sodium niobate energy storage ceramics with good environmental performance are widely used in electric power conversion and pulse power system, large energy storage density and high efficiency, huge power density and charge and discharge faster. In this work, (1-x)NaNbO3-xBi(Ni2/3Nb1/6Ta1/6)O3 [(1-x)NN-xBNNT] (0.12 ≤ x ≤ 0.18) ceramics system were prepared by solid state reaction method. By introducing Bi(Ni2/3Nb1/6Ta1/6)O3 (BNNT), a relaxation strategy was constructed, which significantly improved the energy storage properties of NaNbO3 (NN) based ceramics. Finally, comparatively high recoverable energy density (Wrec) of 3.43 J/cm3 and large energy storage efficiency (η) of 83.3% were obtained in 0.86NN-0.14BNNT ceramics. Besides discharge energy density (Wd) of 0.69 J/cm3, ultra fast charge-discharge rate (t0.9) of 55 ns, the power density (PD) of 70.66 MW/cm3 and the current density (CD) of 883.23 A/cm2 were also observed in ceramic.  相似文献   

3.
Lead-free ceramics with prominent energy storage properties are identified as the most potential materials accessed in the dielectric capacitors. Nevertheless, high recoverable energy storage density (Wrec), large energy storage efficiency (η) and preferable temperature stability can hardly be met simultaneously. The Bi(Zn2/3Ta1/3)O3 and NaNbO3 components are doped in KNN ceramics to substantiate the reliability of this tactic. A high recoverable energy density (Wrec) of ~ 4.55 J/cm3 and a large energy storage efficiency (η) of ~ 87.8% are acquired under the dielectric breakdown strength (DBS) of ~ 375 kV/cm, along with a splendid thermal stability (Wrec variation: ~ 2.3%, η variation: ~ 4.9%) within the temperature range of 20 ℃? 120 ℃. This article demonstrates that the KNN-based ceramics integrate high energy storage properties and outstanding temperature stability at the same time, which broadens the application fields of pulse power systems.  相似文献   

4.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   

5.
《Ceramics International》2023,49(5):8081-8087
Sodium niobate (NaNbO3) ceramics are commonly investigated for use as energy storage ceramics because of their excellent properties. NaNbO3 ceramics are modified mainly by doping with a Bi-based composite perovskite, that is, by the nonequivalent doping of Bi3+ at the A site of the NaNbO3 ceramic. In addition, the high volatility of Bi at high temperatures increases the defects in the ceramics. This paper provides a new idea of doping modification of sodium NaNbO3-based energy storage ceramics. Here, (1?x)NaNbO3xSr(Mg1/3Nb2/3)O3 (x = 0.17, 0.20, 0.23, 0.26) ceramics were prepared by doping NaNbO3 with an Sr-based composite perovskite. Compared with Bi-based composite perovskite, Sr-based composite perovskite doping of NaNbO3 ceramics can also obtained good energy storage properties: a total energy storage density of 4.28 J/cm3 and an energy storage efficiency of 89.3%. In addition, the ceramics exhibited good frequency stability (2–200 Hz) and a high charge/discharge rate (1.06 μs).  相似文献   

6.
《Ceramics International》2022,48(20):30066-30077
Currently, Bi0.5Na0.5TiO3-based lead-free ferroelectrics have attracted considerable attention as one of the promising candidates for dielectric materials due to their large spontaneous polarization, environmental friendliness and low cost. However, their poor energy density hinder the practical application of the materials. Herein, a novel ceramic of (1-x) (0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x(0.96NaNbO3-0.04CaSnO3) (BNBT-xNNCS) has been developed by the solid solution of antiferroelectric NaNbO3–CaSnO3 into ferroelectric Bi0.5Na0.5TiO3–BaTiO3 and the microstructure and electrical properties of the material have been systematically investigated. All the ceramics are lied within the coexistence zone of tetragonal (T) and rhombohedral (R) phases, ensuring to the large polarizations of the materials. Importantly, the introduction of NaNbO3–CaSnO3 shifts dielectric peaks at Ts towards room temperature and simultaneously broadens and flattens the dielectric peaks, destroying the ferroelectric long-range order of ferroelectric domains and inducing the generation of polar nanoregions (PNRs) to reduce the remanent polarization. As a result, the prominent energy storage properties with the charge energy storage density (Wtot) of 1.86 J/cm3, recoverable energy density (Wrec) of 1.64 J/cm3 and energy storage efficiency (η) of 88.23% are obtained in the BNBT-xNNCS ceramics with x = 0.20 (BNBT-20NNCS) under a comparatively low electric field strength of 149 kV/cm, accompanying with superior frequency (ΔWrec ≤ 3%, Δη ≤ 3%, 30–90 Hz) and thermal stability (ΔWrec ≤ 10%, Δη ≤ 10%, 25–175 °C).  相似文献   

7.
《Ceramics International》2022,48(8):10789-10802
In this study, NaNbO3 (NN) was introduced into Ba(Zr0.15Ti0.85)O3 (BZT) to form a solid solution with relaxor ferroelectric characteristics. The dielectric breakdown strength (BDS) of the specimen with 6 mol.% NN reached 680 kV/cm, the corresponding recoverable energy storage density (Wrec) was 5.15 J/cm3, and the energy storage efficiency (η) was 77%. The dissolution of Na + ions at the A position and Nb5+ ions at the B position of the perovskite structure reduced the concentration of oxygen vacancies in the lattice and compensated for defects. The doped ceramics exhibited lower dielectric loss and better thermal stability: the Wrec value was 2 ± 1% J/cm3 at 30–120 °C. In particular, in the 0.02NN ceramics, a ΔT of 1.81 K was achieved at 130 kV/cm, and the operating temperature zone expanded with the increase in doping concentration. The introduction of NN resulted in BZT ceramics that possess excellent energy storage performance and electrocaloric effect properties.  相似文献   

8.
There are urgent demands for high performance capacitors with superior energy storage density and discharge performances. In this work, novel NaNbO3-based lead-free ceramics (0.91NaNbO3-0.09Bi(Zn0.5Ti0.5)O3) with high energy storage capability, high power density and fast discharge speed were designed and prepared. Bi(Zn0.5Ti0.5)O3 was chosen for the purpose to reduce the remnant polarization and improve the induced polarization. Consequently, a large stored energy storage density (Ws˜ 3.51 J/cm3) and high recoverable energy storage density (Wrec˜ 2.20 J/cm3) were obtained in 0.91NaNbO3-0.09Bi(Zn0.5Ti0.5)O3 ceramic under a high breakdown strength of 250 kV/cm, with excellent thermal stability in the range of 20–120 °C. More importantly, the investigated ceramics exhibited high power density (PD˜ 20 MW/cm3) and ultrafast discharge rate (t0.9˜ 0.25 μs), demonstrating potential application in pulse powehr systems. This work provides an effective means of achieving excellent energy storage and discharge performances in NaNbO3-based ceramics for application in dielectric capacitors.  相似文献   

9.
Lead-free NaNbO3 (NN) antiferroelectric ceramics provide superior energy storage performance and good temperature/frequency stability, which are solid candidates for dielectric capacitors in high power/pulse electronic power systems. However, their conversion of the antiferroelectric P phase to the ferroelectric Q phase at room temperature is always accompanied with large remnant polarization (Pr), which significantly reduces their effective energy storage density and efficiency. In this study, to optimize the energy storage properties, short-range antiferroelectric (0.95-x)NaNbO3-xBi(Mg2/3Nb1/3)O3-0.05CaZrO3 (xBMN) ceramics were designed to stabilize the antiferroelectric phase, in which the local random fields were simultaneously constructed. The results showed that the antiferroelectric orthorhombic P phase was transformed into the R phase, and the local short-range random fields were generated, which effectively inhibited the hysteresis loss and Pr. Of great interest is that the 0.12BMN ceramics displayed a large recoverable energy storage density (Wrec) of 5.9 J/cm3 and high efficiency (η) of 85% at the breakdown strength (Eb) of 640 kV/cm. The material also showed good frequency stability in the frequency range of 2–300 Hz, excellent temperature stability in the temperature range of 20–110 ℃, and a very short discharge time (t0.9∼4.92 μs). These results indicate that xBMN ceramics have great potential for advanced energy storage capacitor applications.  相似文献   

10.
Developed ceramic capacitors with excellent recoverable energy storage density (Wrec) and efficiency (η) are greatly desired for next-generation pulsed power devices but challenge as well. Herein, outstanding Wrec of 5.2 J/cm3 and η of 82% are achieved in the PbO-doped fine grain Bi0.25Na0.25Sr0.5TiO3 (BNST-P) based relaxor ferroelectric ceramics. The corresponding mechanism is that A-site Pb-doping increases maximum polarization and breakdown strength, and suppresses remnant polarization simultaneously. Meanwhile, the energy storage property possesses excellent temperature and frequency stability, and the variation of Wrec and η is less than 5% within the range of 25–100 °C and 2–100 Hz. Encouragingly, superior charge-discharge performance with fast discharge speed t0.9 of 24 ns and high power density PD of 296 MW/cm3 is obtained. These striking comprehensive results suggest BNST-P ceramics possess potential prospects for applications.  相似文献   

11.
High-performance capacitors, which possess a high energy storage density, large power density and fast charge/discharge rate, are in high demand in pulsed power systems. Although several studies have been conducted to obtain excellent energy storage performances, the scientific and feasible guidance is lacking on how to quickly and efficiently find a material system with high recoverable energy storage density (Wrec), large energy storage efficiency (η), and excellent thermal stability. Herein, a strategy is proposed to concurrently regulate the temperature corresponding to the maximum dielectric constant (Tm) to around room temperature and enhance the relaxor characteristic. To our satisfaction, excellent energy storage performances with a high Wrec of 3.05 J/cm3, large η of 95%, and wide temperature stability (20–180 °C) were achieved in 0.85BaTiO3-0.15Bi(Mg05Sn0.5)O3 (0.15BMS) ceramics. In addition, these ceramics also exhibited a large discharge energy density (Wdis = 0.74 J/cm3) and fast discharge time (t0.9 = 105 ns) over a broad temperature range (20–180 °C), which confirms their significant application potential in the high-temperature field. These results indicate that this work can provide an effective guideline approach to attain high-performance capacitors for application in pulsed power capacitors.  相似文献   

12.
《Ceramics International》2022,48(21):31931-31940
(1-x)(0.75(Na0.5Bi0.5)TiO3-0.25SrTiO3)-xNdGaO3 ceramics (NBST-xNG, x = 0–0.06) were fabricated through a solid-state reaction method. High-valent Nd3+ ions enter the perovskite A-site to occupy Bi vacancies resulting from the volatilization of Bi, inhibiting the formation of oxygen vacancies and contributing to an enhanced breakdown electric field (Eb). Low-valent Ga3+ ions enter the B-site to substitute for Ti4+ ions, resulting in the formation of random electric fields (REFs) at the B-site due to co-occupying hetero-valence ions of Ga3+/Ti4+, which significantly reduces ferroelectric hysteresis. Therefore, a synergic effect of A- and B-sites co-doping was realized in NBST-xNG ceramics. Benefitting from this synergic effect, an enhanced recoverable energy storage density (Wrec) of 2.88 J/cm3 and an efficiency (η) of 83% are simultaneously obtained in NBST-0.04NG ceramics under a moderate electric field (E) of 200 kV/cm. Compared with most NBT-based ceramics, the values of (η vs Wrec/E2) for NBST-0.04NG ceramics show an obvious advantage, indicating excellent potential for application as an energy storage material. Moreover, Wrec and η of NBST-0.04NG ceramics exhibit excellent temperature stability from 30 °C to 200 °C due to the enhanced correlation strength of polar nanoregions (PNRs) and local structural stability. This work provides a potential strategy to improve the energy storage performance of NBT-based ceramics via the synergic effect of A- and B-site co-doping.  相似文献   

13.
The application of advanced pulse power capacitors strongly depends on the fabrication of high-performance energy storage ceramics. However, the low recoverable energy storage density (Wrec) and energy efficiency (η) become the key links limiting the development of energy storage capacitors. In this work, a high Wrec of ~5.57 J cm?3 and a large η of ~85.6% are simultaneously realized in BaTiO3-based relaxor ceramics via multi-dimensional collaborative design, which are mainly attributed to the ferroelectric-relaxor transition, enhanced polarization, improved breakdown electric field, and delayed polarization saturation. Furthermore, the excellent temperature stability (ΔWrec < ± 5%, 25–140 °C), frequency stability (ΔWrec < ± 5%, 1–200 Hz), and outstanding charge/discharge performance (current density ~1583.3 A cm?2, power density ~190.0 MW cm?3) with good thermal stability are also achieved. It is encouraging that this work demonstrates that multi-dimensional collaborative design is a good strategy to develop new high-performance lead-free materials used in advanced dielectric capacitors.  相似文献   

14.
Multilayer pulsed power ceramic capacitors require that dielectric ceramics possess not only large recoverable energy storage density (Wrec) but also low sintering temperature (<950°C) for using the inexpensive metals as the electrodes. However, lead‐free bulk ceramics usually show low Wrec (<2 J/cm3) and high sintering temperature (>1150°C), limiting their applications in multilayer pulsed power ceramic capacitors. In this work, large Wrec (~4.02 J/cm3 at 400 kV/cm) and low sintering temperature (940°C) are simultaneously achieved in 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics prepared using transition liquid phase sintering. Wrec of 4.02 J/cm3 is 2‐3 times as large as the reported value of other (Bi0.5Na0.5)TiO3 and BaTiO3‐based lead‐free bulk ceramics. The results reveal that 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics are promising candidates for fabricating multilayer pulsed power ceramic capacitors.  相似文献   

15.
Ideal relaxor antiferroelectrics (RAFEs) have high field-induced polarization, low remnant polarization and very slim hysteresis, which can generate high recoverable energy storage Wrec and high energy storage efficiency η, thus attracting much attention for energy storage applications. True RAFEs, on the other hand, are extremely rare, and the majority of them contain environmentally hazardous lead. In this work, we use a viscous polymer rolling process to synthesize a novel and eco-friendly 0.65Bi0.5Na0.4K0.1TiO3-0.35[2/3SrTiO3-1/3Bi(Mg2/3Nb1/3)O3] (BNKT-ST-BMN) dielectric material, which possesses a very typical RAFE-like characteristic. As a result, this material has a high Wrec of 4.43 J/cm3 and a η of 86% at an electric felid of 290 kV/cm, as well as a high thermal stability of Wrec (>3 J/cm3) over a wide range of 30–140 °C at 250 kV/cm. Our findings suggest that the BNKT-ST-BMN material could be a potential candidate for use in energy storage pulse capacitors.  相似文献   

16.
《Ceramics International》2022,48(24):36478-36489
Recently, BaTiO3-BiMeO3 ceramics have garnered focused research attention due to their outstanding performance, such as thermal stability, energy efficiency and rapid charge-discharge behavior, however, a lower recoverable energy storage density (Wrec) caused by a relatively low Pmax (<30 μC/cm2) mainly hinders practical applications. Herein, the energy density and thermal stability are improved by adding a tertiary component, i.e., Bi0.5Na0.5TiO3, into BaTiO3-BiMeO3, resulting in xBi0.5Na0.5TiO3-modified 0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3 ceramics, with x = 0, 0.1, 0.2, 0.3 and 0.4, with superior dielectric properties and eco-friendly impact. Incorporating Bi0.5Na0.5TiO3 with a high saturation polarization and Curie temperature not only significantly enhances Pmax of BaTiO3-Bi(Zn2/3Nb1/3)O3 but also improves Curie temperature of (1-x)[0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3]-xBi0.5Na0.5TiO3 system. Combined with complementary advantages, modified ceramics render a superior energy storage performance (ESP) with a high Wrec of 3.82 J/cm3, efficiency η of 94.4% and prominent temperature tolerance of 25–200 °C at x = 0.3. Moreover, this ceramic exhibit excellent pulse performance, realizing discharge energy storage density Wdis of 2.31 J/cm3 and t0.9 of 244 ns. Overall, the proposed strategy effectively improved comprehensive properties of BaTiO3-based ceramics, showing promise in next-generation pulse applications.  相似文献   

17.
《Ceramics International》2023,49(19):31152-31162
There is still a problem of low energy storage density in dielectric capacitors which is a core component of power systems. For the improvement of the energy storage density, the linear dielectric material CaTiO3 (CT) was introduced in Na0.5Bi0.5TiO3 (NBT) ceramics in this paper. By modifying the A site, a new relaxor ferroelectric ceramic was successfully synthesized and attained a recoverable density (Wrec) of 2.34 J/cm3 at x = 0.18. Moreover, the preparation process was optimized in this paper. Through the viscous polymer process (VPP) route, the energy density (WA) of 82NBT-18CTVPP ceramic further reaches 6.45 J/cm3 at 340 kV/cm, with efficiency (η) up to 75% and a Wrec of 4.82 J/cm3. At the same time, the change of Wrec is small at temperature (30–150 °C) and frequency (1 Hz–300 Hz), which demonstrates its excellent stability. The discharge power density reaches about 180 MW/cm3 and the discharge time is 0.117 μs, which indicates its excellent pulse discharge performance. The results show that 82NBT-18CT lead-free relaxation ferroelectric material is expected to become ideal for high-energy storage applications.  相似文献   

18.
The energy-storage performance of stable NaNbO3-based antiferroelectric (AFE) ceramics was for the first time reported in (0.94-x)NaNbO3-0.06BaZrO3-xCaZrO3 lead-free ceramics. A gradual evolution from an instable AFE phase (x≤0.01) to an orthorhombic AFE P phase (Pbma) (0.01<x≤0.05) was found to accompany the appearance of repeatable double-like polarization versus electric field loops although poled samples (x<0.01) own an AFE monoclinic phase (P21). Interestingly, compared with x≤0.01 samples with instable antiferroelectricity, a relatively high recoverable energy storage density Wrec ? 1.59 J/cm3 (@ 0.1 Hz) and a storage efficiency η of ?30% were achieved in the x = 0.04 ceramic. Moreover, a high Wrec of > 1.16 J/cm3 and an outstanding charge-discharge performance with fast discharge rate (t0.9 < 100 ns) were generated in the temperature range from room temperature to 180 °C in the x = 0.04 ceramic. These results suggest that NaNbO3-based AFE P-phase ceramics could be new potential dielectric materials for high-energy storage capacitors.  相似文献   

19.
Lead-free (1-x)BaTiO3-xSr(Zn1/3Nb2/3)O3 (abbreviated as BT-xSZN, x = 0–0.08) relaxor ferroelectric ceramics were prepared using the traditional solid phase technology, and the effects of SZN modification on their phase structures, microstructures, dielectric performance, ferroelectricity and energy storage performance were studied in detail. A pure perovskite phase was observed in the BT-xSZN ceramics. The BT-based ceramics modified by SZN exhibited refined grain size. As the SZN content was increased, the breakdown strength initially increased and then decreased, and the ferroelectric loops gradually became ‘slim’. The BT-xSZN (x = 0.07) ceramics demonstrated a favourable energy storage performance with high recoverable energy density (Wrec = ~1.45 J/cm3) and energy storage efficiency (η = ~83.12%) at 260 kV/cm. Results indicate that the energy storage performance of BaTiO3 ceramics modified by SZN can be remarkably improved, widening their applications in energy storage at low temperatures.  相似文献   

20.
Dielectric ceramics with high recoverable energy storage density (Wrec) and high energy storage efficiency (η) are urgently needed due to their potential application in pulse capacitor devices. However, the low  η and breakdown strength (BDS) have produced a bottleneck for achieving high Wrec at high electric field. Here, we introduce Bi(Mg0.5Ti0.5)O3 (BMT) into Ba(Ti0.92Sn0.08)O3 (BTS) matrix to enhance the relaxor character of BTS–xBMT and reduce the electrostrictive strain generated during electric field loading. The enhanced relaxor character is beneficial for increasing the efficiency, whereas the reduced electrostrictive strain is profitable to increase the BDS. Furthermore, the BDS is significantly improved by the polymer viscous rolling process. Finally, the electrostrictive effect was considerably lowered in an optimized BTS–0.1BMT composition. More crucially, a high Wrec of 4.34 J/cm3 was attained accompanied by excellent temperature stability (variation ≤±5% between 30 and 120°C). The current results show that the developed dielectric ceramics can be used in pulse capacitor devices for energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号