首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(2):1532-1544
The failure of plasma-sprayed thermal barrier coating (TBC) is often caused by the coating spallation due to crack propagation. In this study, a new model with stacking lamellae is developed based on the cross-section micrograph to explore crack propagation behavior within the ceramic top coat (TC) during isothermal cycling. The dynamic growth process of thermally grown oxide (TGO) is simulated via material properties change step by step. The stress profiles in the lamellar model are first evaluated, and the pore and lamellar interface crack effects on the stress state are further explored. Then, the successive crack growth, linkage, and ultimate coating spallation process is simulated. The results show that the stress intensity in TC enhances with thermal cycling. Large stress concentration always occurs near the pore and lamellar interface crack, which can result in the incipient crack growth. Moreover, the lamellar interface crack also changes the stress distribution within the TC and at the TC/bond coat interface. The multiple crack propagation upon temperature cycling is explored, and the possible coalescence mechanism is proposed. The lamellar crack steadily propagates at the early stage. The crack length sharply increases before the occurrence of coating spallation. The simulated coat spalling path is in line with the experimental result. Therefore, the new lamellar model developed in this work is beneficial to further reveal coating failure mechanism and predict coating lifetime.  相似文献   

2.
Comprehensive understanding of failure mechanism of thermal barrier coatings (TBCs) is essential to develop the next generation advanced TBCs with longer lifetime. In this study, a novel numerical model coupling crack propagation and thermally grown oxide (TGO) growth is developed. The residual stresses induced in the top coat (TC) and in the TGO are calculated during thermal cycling. The stresses in the TC are used to calculate strain energy release rates (SERRs) for in-plane cracking above the valley of undulation. The overall dynamic failure process, including successive crack propagation, coalescence and spalling, is examined using extended finite element method (XFEM). The results show that the tensile stress in the TC increases continuously with an increase in an undulation amplitude. The SERRs for TC cracks accumulate with cycling, resulting in the propagation of crack toward the TC/TGO interface. The TGO cracks nucleate at the peak of the TGO/bond coat (BC) interface and propagate toward the flank region of the TC/TGO interface. Both TC cracks and TGO cracks successively propagate and finally linkup leading to coating spallation. The propagation and coalescence behavior of cracks predicted by this model are in accordance with the experiment observations. Therefore, this study proposed coating optimization methods towards advanced TBCs with prolonged thermal cyclic lifetime.  相似文献   

3.
《Ceramics International》2022,48(18):26206-26216
Mixed oxide (MO) with localized growth feature and high growth rate remarkably affects the lifetime of thermal barrier coatings (TBCs), which indicates that clarifying the ceramic cracking mechanism induced by MO is critical for developing new coatings with high durability. Two kinds of TBC models involving spherical and layered mixed oxides are created to explore the influence of MO growth on the local stress state and crack evolution during thermal cycle. The growth of α-Al2O3 is also included in the model. The undulating interface between ceramic coat and bond coat is approximated using a cosine curve. Dynamic ceramic cracking is realized by a surface-based cohesive interaction. The ceramic delamination by simulation agrees with the experimental observation. The effects of MO coverage ratio and growth rate on the TBC failure are also discussed. The results show that the MO growth causes the local ceramic coat to bear the normal tensile stress. The failure mode of coating is turned from α-Al2O3 thickness control to MO growth control. Once the mixed oxide appears, local ceramic cracking is easy to occur. When multiple cracks connect, ceramic delamination happens. Suppressing MO formation or decreasing MO growth can evidently improve the coating durability. These results in this work can provide important theoretical guidance for the development of anti-cracking TBCs.  相似文献   

4.
In thermal barrier coatings (TBCs) of heavy-duty gas turbines, thermally grown oxide (TGO) develops in two stages, i.e. firstly, a thin layer of dense protective α-Al2O3 forms slowly, and then, a layer of porous detrimental mixed oxide (MO) between top coat (TC) and α-Al2O3 appears. During long-term isothermal oxidation at high temperature, the failure of TBCs usually occurs when a critical thickness of MO is reached, but the exact failure mechanism is still largely unclear, let alone the related stress development. In this paper, we analyze the stress evolution and the resultant failure modes due to the whole-layer growth of uniform MO. The results show that it is MO, rather than α-Al2O3, that is mainly responsible for the micro-cracking and/or delamination in TBCs. The fast growth of expansive MO induces catastrophic stresses, which leads to micro-cracking in the α-Al2O3 layer. The cracking of α-Al2O3 layer reduces the oxidation resistance and further accelerates the MO growth. Our theoretical analysis provides a reasonable explanation of the experimental results.  相似文献   

5.
《Ceramics International》2016,42(10):12172-12179
Two kinds of segmentation-crack structured YSZ thick thermal barrier coatings (TTBCs) were deposited by suspension plasma spraying (SPS) and atmospheric plasma spraying (APS) with nano-based suspension and agglomerated particles, respectively. The phase composition, microstructure evolution and failure behavior of both TBCs before and after thermal shock tests were systematically investigated. Microstructure of the APS coating exhibits typical segmentation-crack structure in the through-thickness direction, similar with the SPS coating. The densities of segmentation-crack in APS and SPS coatings were about 3 cracks mm−1 and 4 cracks mm−1, respectively. The microstructure observation also showed that the columnar and equiaxed grains existed in the SPS coating. As for the thermal shock test, the spallation life of the APS TTBCs was 146 cycles, close to that of the SPS TTBCs (166 cycles). Failure of the APS coating is due to the spallation of fringe segments and splats.  相似文献   

6.
The thermal insulating performance of plasma-sprayed thermal barrier coatings (PS-TBCs) depends dominantly on inter-splat pores, which would be inevitably healed during high temperature exposure. The sintering kinetics of TBCs appears to be highly stage-sensitive. However, the ultrafast sintering kinetics during the initial sintering stage is not yet well understood. In this study, the sintering behavior of PS-TBCs was investigated in a scale-progressive (from nano- to micro-scale) way. Moreover, a novel healing mechanism suitable for lamellar TBCs was proposed based on a combined-effect of material and pore structure. Regarding the changing behavior of material, nano-scale roughening can be found at the as-deposited smooth pore surface after thermal exposure. Regarding the 2D featured inter-splat pores, the roughening behavior facilitates multiple contacts between the counter-surfaces of inter-splat pores. As a result, micro-scale bridge-connection can be observed at the healed parts. This multiple contacts mechanism caused by scale-progressive healing behavior significantly accelerated the matter transfer, resulting in ultrafast sintering kinetics at the initial sintering stage.  相似文献   

7.
《Ceramics International》2020,46(7):8497-8521
Thermal barrier coating (TBC) system is an essential technology in many fields associated to high temperatures. The main function of these TBCs is to protect the metallic parts against high temperatures over 1000 °C. However, degradation occurs both in thermal and mechanical performances during service. Thus, understanding the underlying degradation and failure mechanisms of TBCs is significant to assess and further enhance the durability and reliability of TBCs. Regarding the durability of TBCs, this paper reviews different failures mechanisms of TBCs caused by residual stresses, phase transformations, sintering, hot corrosion attack and oxidation. Subsequently, some methods are summarized to alleviate the undesirable effects of the causes, so as to extend the lifetime of TBCs. Regarding the thermal barrier performance of TBCs, the neoteric advances to resist degradation in thermal conductivity of TBCs are reviewed. In addition, some new ceramic materials with superior intrinsic properties are introduced for ultra-high temperature applications. In brief, this review correlates the microstructure and properties of TBCs for finer interpretation and degradation-resistant design on their thermal and mechanical properties, which would benefit the advanced TBCs in future engineering applications.  相似文献   

8.
《Ceramics International》2019,45(14):17029-17039
Thermal barrier coatings (TBCs) provide thermal insulation to metallic components served at high temperatures. The oriented 2D pores are primarily responsible for the efficient prevention of heat flux. Thus, structural design of TBCs with higher thermal insulation requires clear understanding on the thermal conduction inside coatings. Up to now, previous analytical models to investigate the heat conduction were mainly based on the concept of thermal contact resistance. However, the related assumption was far away from the real coating microstructure. In this study, the intrinsic structural characteristics of plasma sprayed TBCs were firstly investigated. Subsequently, an analytical model based on the structural features was developed to understand the dominant effect of oriented 2D pores on heat flux inside the coatings. Results showed that the insulative ratio of 2D pores dominantly determine the effective prevention of heat flux. Moreover, effects of the microstructural parameters, including splat thickness, bonding ratio and unit size, on the total thermal resistance was discussed. Overall, the understanding of the dominant effect of 2D pores would make it possible to design new TBCs with high performance in future applications.  相似文献   

9.
High-speed rotation is an indispensable working state in the service process of aero-engines, therefore, the centrifugal load cannot be ignored in the failure analysis of thermal barrier coatings. However, due to the lack of service environment simulators that can realize high-temperature as well as high-speed rotation, the failure mechanism of high-speed rotation thermal barrier coatings is still unclear. Here, the effects of rotational speed variation on the service life and failure mode of thermal barrier coatings at high temperatures are studied by experiments and finite element method (FEM). The results show that the service life of high-speed rotating thermal barrier coatings decreases with the increase of rotational speed. The failure is mainly governed by the thinning and spalling of the columnar crystal region of the ceramic layer and the delamination and exfoliation of the equiaxed crystal region, rather than the abnormal growth of TGO. Further in-depth analysis shows that the failure of high-speed rotating thermal barrier coatings is mainly due to the joint driving of centrifugal force and wall shear stress, as well as the contribution of thermal fatigue at high temperatures. This work adds to the understanding of the failure mechanism of thermal barrier coatings under extreme working conditions, and also provides guidance for the safe and reliable service of thermal barrier coatings on working blades.  相似文献   

10.
《Ceramics International》2019,45(12):14896-14907
Failure of plasma-sprayed thermal barrier coatings (TBCs) is very complicated upon temperature cycling, therefore, to ascertain the crack propagation behavior is beneficial to understand the failure mechanism and life prediction of TBCs. In this paper, a finite element model is developed by coupling the dynamic growth of thermally grown oxide and dynamic crack propagation to explore the failure of TBCs induced by the instability of the interface between top coat (TC) and bond coat (BC). The thermal cyclic lifetime is deduced by obtaining the thermal cycles corresponding to the occurrence of complete delamination. The influence of the non-uniformity of the interface on thermal cyclic lifetime is quantitatively evaluated. Sensitivity studies including the effects of constituent properties and crack distance to the interface on the thermal cyclic lifetime are further examined. The results show that the incipient cracks usually nucleate above the valley due to the large tensile stress, and the shear stress near the peak plays a very crucial role. The crack growth involves three stages with different fracture dominated-mode. The crack propagation behavior obtained by simulation is in line with that observed by experiments. The TBCs system with a uniform interface exhibits a longer thermal cyclic lifetime compared to the non-uniform interface. Coating optimization methods proposed in this work may provide an alternative option for developing a TBCs system with longer service lifetime.  相似文献   

11.
Calcium-magnesium-alumina-silicate (CMAS) attack has been a great challenge for the application of thermal barrier coatings (TBCs) in modern turbine engines. In this study, a series of prospective TBC candidate materials, Ba2REAlO5 (RE = Yb, Er, Dy), are found to have high resistance to CMAS attack. The rapid formation of a continuous crystalline layer on sample surface contributes to this desirable attribute. At 1250 °C, Ba2REAlO5 dissolve in the molten CMAS, accumulating Ba, RE and Al in the melt, which could trigger the crystallization of celsian, apatite and wollastonite crystals. Especially, the formation of the crystalline layer in the Ba2DyAlO5 sample is the fastest. This study also reveals that Ba is a useful element for altering CMAS composition to precipitate celsian. Thus, doping Ba2+ in yttria partially stabilized zirconia or other novel TBCs might be an attractive way of mitigating CMAS attack.  相似文献   

12.
《Ceramics International》2016,42(15):16584-16588
3.5 mol% Er2O3 stabilized ZrO2 (ErSZ) and Gd2Zr2O7 powders were produced by a chemical co-precipitation and calcination method, and ErSZ was used to toughen Gd2Zr2O7. The phase structure, toughness and thermal conductivities of ErSZ toughened Gd2Zr2O7 ceramics were investigated. When the ErSZ content was below 15 mol%, the compound consisted of pyrochlore phase, the ordering degree of which decreased with the increase of the ErSZ content. High ErSZ doping led to the formation of metastable tetragonal (t′) phase in the compound. The addition of ErSZ in Gd2Zr2O7 benefited its toughness, mainly attributable to the presence of t′ phase in the compound. With the increase of the ErSZ content in the compound, the thermal conductivity first decreased and then showed an upward tendency, and 10 mol% ErSZ toughened Gd2Zr2O7 exhibited the lowest thermal conductivity.  相似文献   

13.
热障涂层对涡轮叶片冷却效果影响的数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王利平  张靖周  姚玉 《化工学报》2012,63(Z1):130-137
以带有复合冷却结构的涡轮叶片为基础模型,对有/无热障涂层保护下的叶片冷却效果进行了气热耦合数值计算,并通过改变热障涂层的厚度研究了热障涂层对叶片换热的影响规律。研究发现:带有热障涂层的叶片温度明显下降,且越靠近叶片前缘处,温度降低幅度越大;随着热障涂层厚度的增加,下降趋势逐渐变慢;与无热障涂层时叶片温度相比,叶片前缘区域温降最大,当热障涂层厚度为0.35mm时,温降高达160K,压力面和吸力面与前缘相比温降程度较低。  相似文献   

14.
《Ceramics International》2022,48(9):12271-12280
Titanium alloys play an important role in lightweight aircraft engines owing to their low densities and high specific strengths. However, an increase in the thrust-to-weight ratio causes the engine operating temperature to be much higher than the service temperature, which deteriorates the oxidation resistance and mechanical properties. In this study, yttria-partially stabilised zirconia (8YSZ)/NiCrAlY thermal barrier coatings (TBCs) with a bimodal structure were prepared on Ti–6Al–4V by using spark plasma sintering (SPS) to improve the service temperature. The distinctive bimodal structure possessed dense particle contacts and a uniform distribution of porous nanoparticles, resulting in higher strain tolerance, sintering resistance, and lower thermal conductivity. Therefore, the bimodal structure prepared by lowering the SPS preparation temperature increased the high-temperature service time of TBCs on titanium alloy. The ceramic top coating (TC) and bond coating (BC) were well connected after isothermal oxidation at 800 °C for 100 h. The TBCs only shed 6% of their surface area at high temperature and large-angle bending. In addition, the bimodal-structured TBCs effectively improved the oxidation resistance of the Ti–6Al–4V substrate. The Ti–6Al–4V substrate with bimodal-structured TBCs only gained 0.51 times the mass gained by the bare Ti–6Al–4V after 100 h of isothermal oxidation.  相似文献   

15.
《Ceramics International》2022,48(7):9313-9323
Thermal environmental barrier coatings (TEBCs) are capable of protecting ceramic matrix composites (CMCs) from hot gas and steam. In this paper, a tri-layer TEBC consisting of 16 mol% YO1.5 stabilized HfO2 (YSH16) as thermal barrier coating, ytterbium monosilicate (YbMS) as environmental barrier coating, and silicon as the bond coating was designed. Microstructure evolution, interface stability, and oxidation behavior of the tri-layer TEBC at 1300 °C were studied. The as-sprayed YSH16 coating was mainly comprised of cubic phase and ~3.4 vol% of monoclinic (M) phase. After 100 h of heat exposure, the volume fraction of the M phase increased to ~27%. The YSH16/YbMS interface was proved to be very stable because only slight diffusion of Yb to YSH16 was observed even after thermal exposure at 1300 °C for 100 h. At the YbMS/Si interface, a reaction zone including a Yb2Si2O7 layer and a SiO2 layer was generated. The SiO2 grew at a rate of ~0.039 μm2/h in the first 10 h and a reduced rate of 0.014 μm2/h in the subsequent exposure.  相似文献   

16.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   

17.
In this study, a newly-tailored plasma-sprayed (PS) yttria-stabilized zirconia (YSZ) ceramic coating towards enhanced strain tolerance and sintering resistance was developed to improve the durability of TBCs. The thermal shock life was found to be markedly prolonged by more than four times. Failure mechanisms and sintering behavior of the newly-structured and conventional TBCs were systematically investigated through microstructural and mechanical analyses. Conventional TBCs suffered a premature spallation due to rapid sintering-induced stiffening of the ceramic top coat. In contrast, the new coating exhibits an enhanced sintering resistance whereby preserving a good strain tolerance over time. Specifically, its elastic modulus after thermal exposure remains comparable to the as-sprayed states. The effect of ceramic top coat stiffness on cracking behavior of TBCs was clarified by a corresponding cohesive zone finite element modeling. This study provides a new option for improving TBCs durability and the results could benefit the increased integrity of TBCs.  相似文献   

18.
Thermal exposure would compromises the compliance and thermal insulating performance of thermal barrier coatings (TBCs). However, most publications were based on free-standing coatings in which the stress resulting from substrate is essentially different from TBCs on superalloy substrate. In this paper, the constrained effect of substrate on the ceramic top-coat of plasma sprayed lamellar TBCs was investigated. Results showed that the structural changes evolve from micro-scale to macro-scale during thermal exposure. In a relatively shorter thermal exposure stage, the inter-splat pores became narrowed, whereas the intra-splat cracks became widened. Consequently, the healing kinetics of inter-splat pores was much faster than that of the intra-splat cracks. In a relatively longer thermal exposure stage, some macroscale cracks appeared in coating surface owing to the gradually stiffening coatings. As a result, the microscale intra-splat cracks near the macroscale cracks were healed rapidly. In brief, the substrate constraint induced structural changes were stage sensitive.  相似文献   

19.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

20.
《Ceramics International》2019,45(16):19829-19844
To ascertain material parameter effects on the stress states is beneficial to comprehend the crack growth behavior and delamination mechanism in thermal barrier coatings (TBCs). In this work, numerical models are established to explore the combined effects of material parameters including creep, plastic deformation, and thermally grown oxide (TGO) growth on the stress states upon temperature cycling. For all layers, thermal-physical properties reliant on temperature are incorporated into the model. The process of bond coat (BC) oxidation, namely TGO growth, is materialized by changing material properties with cycles. Based on the principle of a single variable, the residual stress states are explored using many different material combinations. The results indicate that the tensile stress in the ceramic top coat (TC) decreases with the increase in the TGO lateral strain distribution gradient. Increasing the BC yield strength or decreasing the TGO growth stress can reduce the tensile stress in TC if there is no creep in the model. When BC yield strength is relatively high (≥150 MPa), BC creep will strengthen the TC tensile stress. TGO creep can decrease the tensile stress in TC irrespective of TGO growth stress and BC creep. When TGO creep rate is higher than 10Btgo, an exceedingly small tensile stress can always be achieved. This work could provide significant theory direction for material selection and composition control towards advanced TBCs with prolonged lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号