首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(24):34092-34105
Effective and safe application of antibacterials has always been an important aspect for their usage. High-efficiency photocatalytic technology driven by visible light for antibacterial action constitutes a practical solution for antibacterial agents and will not harm the human body or the environment. While most studies on β-Bi2O3 materials with good photocatalytic properties under visible light are conducted in the field of optoelectronics, their potential and mechanism as photocatalytic antibacterial agents have not yet been fully explored. Herein, we report the performance of sheet-like metastable β-Bi2O3 material with rich oxygen vacancies and high electron-hole separation efficiency in antibacterial processes, as well as a preliminary exploration of its antibacterial mechanism. The results revealed that the antibacterial activity of the product against E. coli greatly improved in comparison with commercially available α-Bi2O3 owing to its excellent structure and optical properties. In addition, gradient experiments and scavenger experiments have confirmed that the main antibacterial effect of β-Bi2O3 originates from reactive oxygen species (ROS), and the superoxide radical, ·O2, of generated ROS is the key reactive species in the antibacterial process. Through the detection of lipid peroxidation and bacterial respiratory-chain dehydrogenase activity, several pathways were identified for the excellent antibacterial activity of the product.  相似文献   

2.
《Ceramics International》2022,48(20):29580-29588
Herein, we report the sunlight driven photocatalytic degradation of toxic organic dye, Rhodamine B using α-Bi2O3 nanosheets as an effective photocatalyst. The α-Bi2O3 nanosheets were prepared by simple annealing assisted thermal decomposition method and characterized by several techniques in order to understand its morphological, compositional, structural and optical properties. Morphological, structural and compositional investigations confirmed the formation of sheet-like morphologies, high-crystalline monoclinic crystal structure, and pure α-Bi2O3, respectively. The synthesized α-Bi2O3 nanosheets exhibited a high photocatalytic degradation of a toxic organic dye, i.e. Rhodamine B (RhB). Under optimal reaction conditions, ~95% photocatalytic degradation of RhB (10 mg/L, pH 10) was observed in 180 min using 0.75 g/L catalyst dosage under sunlight irradiation. According to the findings, the synthesized catalyst had outstanding photocatalytic properties and can be used to cleanse textile wastewater under direct sunlight.  相似文献   

3.
In the present study, simultaneously enhanced electrical stability (low degradation rate of 8.0 × 10?3 mA? h1/2) and high nonlinear coefficient of 56 were obtained in ZnO varistors by doping SiO2. To clarify the mechanism of enhanced properties, comprehensive microscopic analyses were studied. Particularly, the intrinsic point defects were quantitatively characterized for the first time. Results showed that the densities of zinc interstitials (Zni) and oxygen vacancies (Vo) were dramatically decreased, resulting in enhanced stability. Besides, reduced Zni and Vo decreased the total donor density, contributing to the improved barrier height and thus leading to enhanced nonlinearity. Combined with XRD and SEM results, it is deduced that such reduced Zni and Vo are attributed to the Si-stabilized high oxygen conducting δ-Bi2O3 phase. Furthermore, this elucidated mechanism, which has been long neglected in Si-doped varistors, may provide valuable insights into further developing high-performance ZnO varistors.  相似文献   

4.
Pure Bi2O3 with high ionic conductivities is considered as a candidate material for an electrolyte in solid oxide fuel cells and oxygen separation membranes. However, its lower structural and thermal stability prevent it application in ion conductivity and photocatalysis at suitable temperatures. Metal oxides are usually used to stabilize its structure to lower temperatures and the underlying mechanism is still unclear. To shed light on the issue, vacancy ordered structures of pure and doped δ-Bi2O3 have been studied by first-principles calculations. It have been shown that the structure with combined <110> and <111> vacancy arrangements is energetically favorable compared to either <100>, <110> or <111> vacancy ordered structures. Electronic structure analyses have further verified that δ-Bi2O3 has a semiconductor character with an energy gap of 2.0 eV, consistent with the experiment results. The site occupation of doping ions is further analyzed by formation energy, geometry and electronic structures. It is evident that the substitution sites of doping ions depend on the type of the doping ions. The ions with large ion sizes tend to occupy the Bi(2) sites while the ions with small ion sizes tend to occupy the Bi(1) sites. At the same time, the probability of the Y ions occupying the oxygen vacancy sites and the optical properties of the Y-doped Bi2O3 are explored. Our investigations reveal that the electronic structure of oxides could be tuned by vacancy and interstitial defects for better conductivity, photocatalytic properties.  相似文献   

5.
ZnO–SnO2 nanocubes were used as promising material for efficient sensing of p-nitrophenol and faster photocatalytic degradations of dyes like methyl orange (MO), methylene Blue (MB) and acid orange 74 (AO74). ZnO–SnO2 nanocubes were prepared by the facile solution process at 50 °C using Zn(NO3)2·6H2O and SnCl2·2H2O as a precursor in the presence of ethylenediammine. The synthesized material was examined for its morphological, structural, crystalline, optical, vibrational, and compositional studies by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy. FESEM studies revealed the formation of well-defined ZnO–SnO2 nanocubes where the structural examinations revealed the formation of a crystalline tetragonal rutile phase for SnO2 with some crystal sites doped with Zn. The as-synthesized nanocubes were explored for their photocatalytic activities towards three different dye viz. MO, MB, and AO74. Practically, complete degradation of AO74 was seen within 4 minutes of photo-irradiation in the presence of 0.05 g ZnO–SnO2 nanocubes. However, 97.17% and 41.63% degradations were observed for MB and MO within 15 and 60 minutes, respectively. All the dye degradation processes followed the pseudo-first-order kinetic model. Moreover, the as-synthesized nanocubes were utilized to fabricate highly sensitive and selective fluorescent chemical sensor for the detection of p-nitrophenol (PNP). ZnO–SnO2 nanocubes showed a very low detection limit of 4.09 μM for the detection of PNP as calculated according to the 3σ IUPAC criteria. Further, the as-synthesized ZnO–SnO2 nanotubes were found to be highly selective for p-nitrophenol as compared to the other two isomers.  相似文献   

6.
7.
《Ceramics International》2020,46(14):22504-22512
α-Bi2O3/β-Ni(OH)2 composites exhibited perfect photocatalytic properties for organic pollutants degradation under sunlight irradiation. Pure α-Bi2O3 and β-Ni(OH)2 were prepared by coprecipitation method and then mechanically mixed in different proportions to form α-Bi2O3/β-Ni(OH)2 composites. The XRD and FTIR analyses have well emphasized the formation of monoclinic α-Bi2O3 and hexagonal β-Ni(OH)2 phases with high crystallinity. The SEM micrographs of α-Bi2O3 and β-Ni(OH)2 powders displayed a rod and sheet shaped grains, respectively. The band gap of the pure α-Bi2O3 was estimated to be 2.87 eV. Pure β-Ni(OH)2 revealed three absorption bands in the UV–visible light region. α-Bi2O3/β-Ni(OH)2 composites have a more intense absorption in the visible light region compared to pure α-Bi2O3 sample. Modification of α-Bi2O3 by β-Ni(OH)2 induced a superior photocatalytic activity especially at β-Ni(OH)2 content of 12 wt% in α-Bi2O3 (BN-12 composite). This composite showed high efficiencies of 99%, 96%, 91% and 90% for methylene blue, Congo red, methyl orange and 4-niropheniol degradation in 80, 80, 180 and 300 min under sunlight irradiation, respectively. The remarkable photocatalytic activity of the α-Bi2O3/β-Ni(OH)2 composite was attributed to the new states in charge separation, charge transportation and the intensive absorption of visible light. α-Bi2O3/β-Ni(OH)2 composite (BN-12) has a great potential in removing of cationic and anionic dyes beside phenolic compounds from wastewater.  相似文献   

8.
The extent of incorporating Eu3+ and Tb3+ for bismuth in the oxygen-deficient fluorite structured Bi0.50Th0.50Oy has been examined together with the comprehension of their luminescence characteristics. The samples were synthesized by solution combustion method from which doping limits of Eu3+ and Tb3+, respectively, in the fluorite structure was determined. Uniform distribution of constituent elements was confirmed from elemental mapping. Doping Eu3+ and Tb3+-ions introduced compressive strain and oxygen vacancies in the system. Raman spectra of doped samples confirmed the fluorite structure and revealed the existence of oxygen vacancies in them. While Tb-doped samples showed a systematic decrease in band gap with increase in dopant concentration, such systematic variation was not observed for Eu-doped samples. Conclusions about the local site symmetry around Eu3+ and Tb3+ ions in the defect fluorite structure have been drawn from the photoluminescent spectral analysis of doped samples. Energy transfer from Bi3+ to Eu3+ and Tb3+-has been observed in these samples. The Judd-Ofelt analysis has been carried out to understand luminescence characteristics in these samples.  相似文献   

9.
《Ceramics International》2019,45(12):15036-15047
A three-dimensional (3D) flower-like β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst was synthesized via decomposition of the precursor fabricated using a composite soft template, which was constructed from dl-aspartic acid and nonionic amphiphilic triblock copolymer (Pluronic F127). The morphology, phase structure, composition, effect of reactant concentration, and possible formation mechanism were systematically studied. The results showed that dl-aspartic acid was chosen as the coordination- and structure-directing agent, while F127 was used as the capping agent during preparation of the precursor. The as-prepared flower-like β-Bi2O3/Bi2O2CO3 heterojunction obtained after calcination of the self-sacrificing precursor at 290 °C showed excellent photocatalytic performance in the degradation of the refractory colorless antibiotic agent tetracycline (TC) under simulated sunlight irradiation, with 98.79% TC degradation being achieved within 60 min of irradiation. This excellent photocatalytic performance was attributed to the narrow band gap, heterojunction structure, and 3D hierarchical structure. The results further revealed that photogenerated holes (h+) and hydroxyl radicals (OH) dominated the photocatalytic process. Furthermore, the β-Bi2O3/Bi2O2CO3 heterojunction catalyst was not photocorroded after six consecutive cycles, suggesting an excellent photostability.  相似文献   

10.
《Ceramics International》2023,49(18):30019-30028
In the present contribution, p-n type heterojunction α-Fe2O3/Cr2O3 S-scheme system photocatalyst has been fabricated utilizing a sol-gel approach with assisted nonionic surfactant for a highly effective H2 evolution rate under visible illumination. Pt NPs have been reduced by photodeposition during the photocatalytic reaction to collect Pt@α-Fe2O3/Cr2O3 finally. XRD analysis of Fe2O3/Cr2O3 nanocomposites verified the construction of Fe2O3 and Cr2O3 with rhombohedral phases. TEM images of Cr2O3 NPs were almost spherical and uniform in shape and size (20 ± 5 nm), and very small Fe2O3 NPs (3-5 nm) were distributed on the mesoporous Cr2O3 networks. The obtained α-Fe2O3/Cr2O3 photocatalyst exhibited noteworthy photocatalytic H2 evolution with high efficiency and stability for 45 h. Interestingly, the photocatalytic H2 evolution rate gradually boosted with the extent of Fe2O3 percentage up to 15% and its rate of 2215.4 μmol g-1h-1, which was fostered 7.25 folds larger than that of Cr2O3 NPs (305.7 μmol g-1h-1). The enhancement H2 evolution rate of Fe2O3/Cr2O3 photocatalyst in comparison with bare Cr2O3 NPs was ascribed to facilitate the separation of photocarriers and existing considerable reactive sites. In addition, constructing n-type Fe2O3 and p-type Cr2O3 with close contact is essential in improving the H2 evolution rate. The possible photocatalytic mechanism over Fe2O3/Cr2O3 nanocomposite was addressed based on electrochemical measurements. The construction of the S-scheme system of Fe2O3/Cr2O3 nanocomposite could be suggested to improve the separation of photocarriers through optimal transfer channels owing to the formation of synergistic characteristics. Our results provide avenues for constructing stable photocatalysts with high efficiency for H2 evolution through visible exposure.  相似文献   

11.
《Ceramics International》2023,49(5):7438-7451
A binary and ternary system of highly bioactive nanoparticles of xerogel (88SiO2–12CaO (wt.%), solvXG88, 78SiO2–16CaO–6P2O5, solvXG78P6) and glass (69SiO2–25CaO–6P2O5, solvBG69P6) were prepared following an unconventional solvothermal path of the synthesis. These nanosized (<50 nm), non-spherical in shape and mesoporous materials with different compositions greatly enhanced the formation process of hydroxyapatite (HA) in simulated physiological fluids compared to reference 45S5 glass, commonly used in orthopedics and dentistry. The deposition of a HA layer on the glasses was analyzed by various techniques, namely XRD, IR-ATR, 31P CP-MAS NMR, EDS analyses, SEM, and HR-TEM imaging. For both types of nanoparticles (glass and obtained at lower temperature xerogels) superior apatite-mineralization ability in time as short as 4 h in the physiological-like buffer was achieved thus, exceeded the bioactivity of the 45S5 glass. This unique bioactivity was complemented by biocompatibility with human dermal fibroblasts and MC3T3 mouse osteoblast precursors, verified in a wide range of concentrations, as well as hemocompatibility studies. The most promising candidate which can compete with clinically used Bioglass is solvXG78P6.  相似文献   

12.
《Ceramics International》2023,49(3):4872-4880
CaO–B2O3–SiO2–Ta2O5 (CBST) glass-ceramics, with different Ta2O5 content, (up to 6 mol%), have been prepared by using glass melt quenching followed by heat treatment between 800 and 880 °C. The Fourier Transform Infrared (FTIR) results showed that the stronger the attraction of Ta5+ to the oxygens in the BO33? and SiO32? structures, the more easily the B–O and Si–O bonds will be destroyed. The underlying reason is most probably the high field strength of Ta5+, which results in a weakening of the vibration intensities of the [BO3] and [SiO4] units. Moreover, the Differential Scanning Calorimetry (DSC) results showed that the softening point (Tg), crystallization starting temperature (Tc1), and exothermic crystallization peak temperature (Tp1), of the CaSiO3 phase, shifted to higher values with the addition of Ta2O5. Also, the crystallization activation energy (Ea) and the glass stability factor (ΔT) of the CaSiO3 phase increased, which indicated that the CaSiO3 phase of the glass became inhibited by the addition of Ta2O5. It was, thus, obvious that there was a need of glass characterization. The results of the crystallization kinetics showed that the critical cooling rate decreased with the addition of Ta2O5, which indicated that the viscosity of the system had increased. The CBST glass-ceramics, containing 1 mol% Ta2O5, that were sintered at 875 °C for 15 min showed excellent dielectric properties: εr = 6.22 and tanδ = 1.19 × 10?3 (1 MHz). To sum up, CaO–B2O3–SiO2–Ta2O5 glass-ceramics are potential low temperature co-fired ceramic substrate materials.  相似文献   

13.
xNb2O5–7.5La2O3-Al2O3 ceramic composites with in-situ-grown columnar Al2O3 crystals were successfully prepared by microwave sintering at 1450–1525?°C using α-Al2O3, Nb2O5, and La2O3 powders as raw materials. X-ray diffraction results indicated that the main phases were Al2O3, LaNbO4, and Nb2O5 in the prepared samples. A field emission scanning electron microscope (FESEM) showed that the Al2O3 crystals appeared as columnar in the structure. Moreover, the grain size of the columnar Al2O3 crystals increased with the Nb2O5 content. The ratio of the major axis to the minor axis of the crystals was largest when the Nb2O5 content was 15?vol%. Furthermore, the grain-growth kinetics index (n), growth activation energy (Q), and growth mechanism of the columnar Al2O3 crystals were studied. The results indicated that the Nb2O5 addition could promote formation and growth of columnar Al2O3 crystals, and the grain-growth activation energy indicated that the dissolution process controls the crystal growth. The growth mechanism of the columnar Al2O3 crystals was also studied. The present work demonstrated that Nb2O5 is a good additive for the preparation of Nb2O5–7.5La2O3-Al2O3 composite ceramics with columnar Al2O3 crystals.  相似文献   

14.
《Ceramics International》2020,46(6):7667-7680
A few biphasic nano composites containing α and β Bi2O3 of varying composition were synthesized by facile solvothermal method without using any capping agent and further calcination. X-ray diffraction, microscopic and spectroscopic techniques were employed for characterization of the as synthesized catalysts which are used as photocatalysts in degradation of pollutant, Rhodamine B (RhB) dye. The band gap of the nanocatalysts as calculated from tauc plot varies within 2.35–2.58 eV for β-form and 2.85–3.19 eV for α-form in the α-β Bi2O3 hetrojunctions. The operational parameters that influence the degradation process were optimized. The best catalyst dosage and pH are 0.5 gL-1 and 4 respectively and the best concentration of H2O2 when added is 2 mM for 10 ppm aqueous solution of dye. Among different heterojunctions, the best catalyst which is produced from bismuth nitrate concentration of 0.05 M, degrades RhB up to 99.6% at pH 4 under 120 min sunlight irradiation. The effects of addition inorganic salts in RhB dye solution were also examined. The radical trapping experiments have been applied to explore the involved and main species responsible for degradation. The identification of degradation products of RhB was analyzed and the plausible mechanistic pathway is drawn from HPLC and HRMS. It shows that the degradation of RhB proceeds via initial generation of N-deethylated products followed by ring opening ones, which indicates the photosensitization induced photocatalytic mechanism of the reaction.  相似文献   

15.
《Ceramics International》2015,41(4):5429-5438
This paper reports the facile synthesis, characterization and applications of Sb2O3–ZnO nanospindles. The nanospindles were synthesized by facile diethanolammine assisted hydrothermal process and characterized in detail in terms of their morphological, structural, compositional and optical properties. The detailed characterizations revealed that the prepared nanoellipsoids are well-crystalline, grown in high density and possessing good optical properties. Further, the as-synthesized Sb2O3–ZnO nanospindles were found to be an efficient photocatalyst for the degradation of methylene blue (MB) dye under UV light. Sb2O3–ZnO nanospindles were also used as an efficient electron mediator to fabricate a robust, highly sensitive and reproducible chemical sensor for the detection of thiourea in aqueous medium. The fabricated chemical sensor possesses high sensitivity of 6.54 µA mmol L−1 cm−2. The sensing calibration plot was found to be linear (R2=0.91423) over the large concentration range from 1.56 mmol L−1 to 100 mmol L−1. The obtained results confirmed that the Sb2O3–ZnO nanospindles may hold great potential for the removal of organic pollutants and for monitoring of thiourea in aqueous solution.  相似文献   

16.
Dielectric properties and ferroelectric domain configurations of multiferroic xBaTiO3–(1 ? x)BiFeO3 (x = 0.10–0.33) solid solutions synthesized by conventional solid-state reaction, were reported. A structural transition from rhombohedral to pseudo-cubic structures appeared around x = 0.33, and the formation of impurity phase of Bi2Fe4O9 was effectively depressed by doping BaTiO3. Dielectric constants of xBaTiO3–(1 ? x)BiFeO3 solid solutions decreased with increasing the frequency, and the degree of decrease was related to the doping content of BaTiO3. Transmission electron microscopy images revealed that the ferroelectric domain configurations in the multiferroic BiFeO3–BaTiO3 solid solutions with rhombohedral symmetry, exhibited a wavy character whereas a predominant intricate domain structure with fluctuating mottled contrast was observed in the multiferroic BiFeO3–BaTiO3 solid solution with pseudo-cubic phase structure. The presence of 1/2{1 1 1} superlattice spots in the selected area electron diffraction patterns taken from the multiferroic BiFeO3–BaTiO3 solid solutions with rhombohedral symmetry indicated that the ordered regions have a doubled perovskite unit cell.  相似文献   

17.
《Ceramics International》2017,43(10):7627-7635
The α/β-Bi2O3 photocatalyst was successfully synthesized by a novel solvothermal-calcination method. The physical and chemical properties of as-prepared samples were characterized based on XRD, XPS, SEM, TEM, EDS, BET, UV–vis DRS and PL techniques. The synthesized α/β-Bi2O3 photocatalyst exhibited enhanced photocatalytic activity for 17α-ethinylestradiol (EE2), and 96.9% of EE2 was degraded after only 24 min of visible-light irradiation using α/β-Bi2O3 as photocatalyst. The reaction rate constant over α/β-Bi2O3 photocatalyst was 1.42, 2.23, 9.22 and 54.1 times higher than pure β-Bi2O3, α-Bi2O3+β-Bi2O3, α-Bi2O3 and P25 respectively. Effect of catalyst dosage and pH value was investigated. The possible photocatalytic mechanism has been discussed on the basis of the theoretical calculation and the experimental results. α/β-Bi2O3 was a fairly stable and efficient photocatalyst under the studied experimental conditions, proving that the α/β-Bi2O3 photocatalyst was a promising photocatalyst for the practical application.  相似文献   

18.
Epoxy resin filled with suitable high Z elements can be a potential shield for X-rays and γ-rays. In this work, we present the γ-ray attenuation properties of epoxy composites filled with (0–30 wt%) Tantalum pentoxide (Ta2O5) and Ta2O5-Bi2O3, which were prepared by open mold cast technique. X-ray diffraction patterns showed crystalline peaks of Ta2O5 and bismuth oxide (Bi2O3) in the prepared epoxy-Ta2O5 and epoxy-Ta2O5-Bi2O3 composites. Homogeneity of the samples at higher filler wt% was revealed by SEM images. Mechanical characterization showed the enhanced mechanical strength of epoxy-Ta2O5-Bi2O3 composites compared to epoxy-Ta2O5. Higher storage modulus and glass transition temperature of the epoxy-Ta2O5-Bi2O3 composites showed enhanced stiffness and thermal stability when compared to neat and epoxy-Ta2O5. Decrease in the value of tan(δ) at higher content of filler loadings indicated the good adhesion between filler and matrix. Mass attenuation coefficients of epoxy-Ta2O5 (30 wt%) composites at γ-ray energies 59.54 and 662 keV were found to be 0.876 cm2 g–1 and 0.084 cm2 g–1, while that of epoxy-Ta2O5-Bi2O3 (30 wt% Bi2O3) composite were 1.271 cm2 g–1 and 0.088 cm2 g–1, respectively. The epoxy-5% Ta2O5-30% Bi2O3 composites with higher μ/ρ value and tensile strength may be a potential γ-ray shield in various radiation environments.  相似文献   

19.
《Ceramics International》2017,43(14):11132-11141
Dy3+ doped calcium bismuth borate glasses were synthesized in the composition range of xLiCl-(30 − x)CaO-20Bi2O3-50B2O3 + 1 mol% Dy2O3 (x = 0, 2, 5, 7, 10 and 15 mol%, LC0, LC2, LC5, LC7, LC10 and LC15 respectively) using conventional melt-quench technique. Broad XRD profiles confirmed non-crystalline nature of synthesized compositions. The compositional dependencies of structural changes (using FTIR spectra), thermal behavior (using DSC thermographs) and optical band gap (using UV–Vis–NIR spectra) were discussed. Photoluminescence (PL) excitation spectra recorded at 577 nm yielded six different excitation peaks belonging to Dy3+ ions. The PL emission spectra recorded at 451 nm were analyzed to extract different light emission parameters viz. Y/B ratio, color coordinates, correlated color temperature (CCT) following CIE 1931 chromaticity diagram. The emission colors were found to lie in white light region and lies very close to standard white light emission. The CCT of sample LC10 (5335 K) is closest to CCT of standard white light (5615 K) which depicted the optimized concentration of LiCl for application of these glasses in WLED application.  相似文献   

20.
《Ceramics International》2023,49(18):29534-29541
Tungsten trioxide (WO3) is a classical electrochromic (EC) material with advantages of abundant reserves, high coloration efficiency and cyclic stability. However, WO3 films are often accompanied by a narrow spectrum of modulation due to a single-color change from transparent to blue. In this work, we report a wide-spectrum tunable WO3·H2O nanosheets EC film solvothermally grown on fluorine-doped tin oxide (FTO) glass. Interestingly, the crystalline WO3·H2O nanosheets film is transformed into amorphous WO3 after annealing at 250 °C for 1 h. The amorphous film can be transformed into crystalline WO3 film by increasing the annealing temperature to 450 °C. After annealing at 250 °C, the WO3 film exhibits an optical modulation of 75.8% in a broad solar spectrum range of 380–1400 nm and blocks 88.9% of solar irradiance. Fast switching responses of 4.9 s for coloration and 6.0 s for bleaching, and a coloration efficiency of 86.4 cm2 C−1 are also achieved. Additionally, the WO3 film annealed at 250 °C also demonstrates an excellent cyclic stability, where 99.6% of the initial optical modulation can be retained after 1500 cycles. This simple and mild solvothermal method used in this work provides a new idea for the preparation of wide-spectrum tunable WO3 EC films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号