首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a series of pure Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrites have been synthesized successfully using a novel route through calcination of tailored hydrotalcite-like layered double hydroxide molecular precursors of the type [(Ni + Zn)1 − x − yFey2+Fex3+(OH)2]x+(SO42−)x/2·mH2O at 900 °C for 2 h, in which the molar ratio of (Ni2+ + Zn2+)/(Fe2+ + Fe3+) was adjusted to the same value as that in single spinel ferrite itself. The physico-chemical characteristics of the LDHs and their resulting calcined products were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy. The results indicate that calcination of the as-synthesized LDH precursor affords a pure single Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrite phase. Moreover, formation of pure ferrites starting from LDHs precursors requires a much lower temperature and shorter time, leading to a lower chance of side-reactions occurring, because all metal cations on the brucite-like layers of LDHs can be uniformly distributed at an atomic level.  相似文献   

2.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

3.
The polycrystalline samples of Fe3−xMnxO4 (0.10 ≤ x ≤ 0.50) were prepared by a solid-state route reaction method. X-ray diffraction pattern shows that Mn2+ doped magnetites are in single phase and possess cubic inverse spinel structure. The resistivity measurements (10 < T < 300 K) for x = 0.0 and 0.01 confirms the first order phase transition at the Verwey transition TV = 123 K and 117 K, respectively. No first order phase transition was evidenced for Fe3−xMnxO4 (0.10 ≤ x ≤ 0.50). Small polaron model has been used to fit the semiconducting resistivity behavior and the activation energy ?a, for samples x = 0.10 and 0.50 is about 72.41 meV and 77.39 meV, respectively. The Raman spectra of Fe3−xMnxO4 at room temperature reveal five phonons modes for Fe3−xMnxO4 (0.01 ≤ x ≤ 0.50) as expected for the magnetite (Fe3O4). Increased Mn2+ doping at Fe site leads to a gradual changes in phonon modes. The Raman active mode for Fe3−xMnxO4 (x = 0.50) at ≅641.5 cm−1 is shifted as compared to parent Fe3O4 at ≅669.7 cm−1, inferring that Mn+2 ions are located mostly on the octahedral sites. The laser power is fixed to 5 mW causes the bands to broaden and to undergo a small shift to lower wave numbers as well as increase in the full width half maxima for A1g phonon mode with the enhancement of Mn2+ doping. Mössbauer spectroscopy probes the site preference of the substitutions and their effect on the hyperfine magnetic fields confirms that Mn+2 ions are located mostly on the octahedral sites of the Fe3−xMnxO4 spinel structure.  相似文献   

4.
We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P63cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3−3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3−3xCu2xVxO9 for 0 < x ≤ 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure.  相似文献   

5.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

6.
LiMxMn2−xO4 (M = Ni2+, Co3+, and Ti4+; 0 ≤ x ≤ 0.2) spinels were prepared via a single-step ultrasonic spray pyrolysis method. Comparative studies on powder properties and high rate charge-discharge electrochemical performances (from 1 to 15 C) were performed. XRD identified that pure spinel phase was obtained and M was successfully substituted for Mn in spinel lattice. SEM and TEM studies confirmed that powders had a feature of ‘spherical nanostructural’, that is, powders consisted of spherical secondary particles with the size of about 1 μm, which were developed from close-packed primary particles with several tens of nanometers. Substitutions enhanced density of second particles to different extents, depending on M and its content. Charge-discharge tests showed that as-prepared LiMn2O4 could deliver excellent rate performance (around 100 mAh/g at 10 C). Ni substitution contributed to improving electrochemical performances. In the voltage range of 4.95-3.5 V, the materials showed much better electrochemical performances than LiMn2O4 in terms of capacity, cycleability and rate capability.  相似文献   

7.
The wurtzite-type Zn0.99−xMn0.01CuxS (x = 0, 0.003, 0.01) nanowires were prepared by a simple hydrothermal method at 180 °C. The structure and morphology of the samples were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron micrograph (FESEM) and X-ray photoelectron spectrum (XPS). The results showed that both the Mn2+ and Cu2+ ions substituted for the Zn2+ sites in the host ZnS. The ethylenediamine-mediated template was observed, which was used to explain the growth mechanism of the nanowires. The color-tunable emission can be obtained by adjusting the concentrations of Mn2+ and Cu2+ ions. The ferromagnetism was observed around room temperature.  相似文献   

8.
The effect of Ti4+ ion on the formation of magnetite, which were prepared by solid-state route reaction method, were studied by resistivity, Raman and 57Fe Mössbauer spectrometry. Resistivity measured in the range of 10 < T < 300 K for Ti4+ magnetite Fe3−xTixO4 exhibit first order phase transformations at the Verwey transition Tv for Fe3O4, Fe2.98Ti0.02O4 and Fe2.97Ti0.03O4 at 123 K, 121 K and 118 K, respectively. No first order phase transition was observed for Fe2.9Ti0.1O4 and small polaron model retraces the semiconducting resistivity behavior with activation energy of about 72 meV. The changes in Raman spectra as a function of doping show that the changes are gradual for samples with higher Ti doping. The Raman active mode for Fe2.9Ti0.1O4 at ≅634.4 cm−1 is shifted as compared to parent Fe3O4 at ≅670 cm−1, inferring that Mn2+ ions are located mostly on the octahedral sites. 57Fe Mössbauer spectroscopy probes the site preference of the substitutions and their effect on the hyperfine magnetic fields confirms that Ti4+ ions are located mostly on the octahedral sites of the Fe3−xTixO4 spinel structure.  相似文献   

9.
Copper substituted Co-Cu ferrites Co1 − xCuxFe2O4 (0 ≤ x≤0.5) have been studied with Mössbauer spectroscopy, x-ray diffraction, and vibrating sample magnetometer (VSM). The Co-Cu ferrite toroidal core samples were sintered at 860-940 °C for 2 h and the initial permeability, quality factor, density and shrinkage were also measured. The crystal structure was found to be an inverse cubic spinel with the lattice constant a0 = 8.390 Å and a0 = 8.386 Å for Co-ferrite and Cu2+ substituted Co-ferrite, respectively, by Rietveld profile analysis using the FULLPROF program. Hyperfine field was decreased with increasing Cu2+ concentration. The saturation magnetization (Ms) of the Co-Cu ferrite annealed at 900 °C decreased drastically and the coercivity, Hc, dropped dramatically from about 1419 to 455 Oe as copper concentration x decreased from 0.0 to 0.5. This shows that Ms, Hc can be controlled using Cu content, and initial permeability and quality factor Q is nearly constant in Cu2+ substituted Co-ferrite. The toroidal core data showed that the density and shrinkage of Co1 − xCuxFe2O4 (0≤x ≤ 0.5) ferrites increased with increasing quantity of Cu ions.  相似文献   

10.
Oxides with the structure MCu2O2 (M = Ca, Ba, Mg and Sr) are promising materials for the development of new p-type transparent conducting oxide thin films. This paper reports preliminary results on the growth and characterisation of CaCu2Ox thin films by pulsed injection MOCVD. By using as precursors calcium and copper tetramethylheptanedionate dissolved in meta-xylene, mixed calcium-copper films have been grown in the temperature range from 450 °C to 550 °C. At these temperatures, deposited films exhibited a high mirror reflection effect, good adherence and were reasonably uniform with the cationic composition of the films being easily controlled by adjusting the copper-calcium ratio in the precursor solution. In CaCu2O2, copper is in the Cu1+ oxidation state and depending on the oxygen partial pressure used, the films either contained CaCu2O3 or a mixture of CaO, CuO and Cu2O. Optimisation of annealing conditions increased the presence of Cu1+ in the film. Films had a maximum transmittance of 50% in the visible range and were highly resistive. Appropriate annealing conditions reduced the resistivity of the films.  相似文献   

11.
Synthesis by reverse micelles was used to produce NiMn2−xFexO4 with nanometric particle sizes for their use as conversion anode materials for lithium ion batteries. The hydroxide precursor was characterized by infrared spectroscopy and the decomposition was followed by thermal analysis. Cation distribution in the spinel structure of pristine samples was evaluated by Mössbauer spectroscopy evidencing that octahedral Fe3+ is substituted by Mn3+ ions in NiMnFeO4. Capacity values of 750 mA h g−1 were retained for 50 cycles for NiMnFeO4 and NiFe2O4, respectively. A good kinetic response was observed in NiMnFeO4 at 2C.  相似文献   

12.
SrLa1−xRExGa3O7 (RE = Eu3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechini sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 °C and crystallized fully at 900 °C. The results of FT-IR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 °C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm. The RE ions showed their characteristic emission in crystalline SrLa1−xRExGa3O7 films, i.e., Eu3+5D0-7FJ (J = 0, 1, 2, 3, 4), Tb3+5D4-7FJ (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa1−xRExGa3O7 films, respectively.  相似文献   

13.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

14.
MgxCu3−xV2O6(OH)4·2H2O (x ∼ 1), with similar crystal structure as volborthite Cu3V2O7(OH)2·2H2O, was successfully prepared by a soft chemistry technique. The method consists of mixing magnesium nitrate and copper nitrate with a boiling solution of vanadium oxide (obtained by reacting V2O5 with few mL of 30 vol.% H2O2 followed by addition of distilled water). When ammonium hydroxide NH4OH 10% was added (pH 7.8), a green yellowish precipitate was obtained. Using X-ray powder diffraction data, its crystal structure has been determined by Rietveld refinement. Compared to volborthite, the vanadium coordination changes from tetrahedral VO4 to trigonal bipyramidal VO5, and magnesium replaces copper, preferably, in the less distorted octahedron. At 300 °C, the phase formed is similar to the high pressure (HP) monoclinic Cu3V2O8 phase. However at higher temperature, 600 °C, the phase obtained is different from known Cu3V2O8 phases.  相似文献   

15.
The Ba3ZnTa2O9 (BZT) and Ba3MgTa2O9 (BMT) ceramics, a family of A3B2+B5+2O9 complex perovskites, are extensively utilized in mobile based technologies due to their intrinsic high unloaded quality factor, high dielectric constant and a low (near-zero) resonant frequency temperature coefficient at microwave frequencies. The preparation conditions as well as size and nature of B cations have a profound effect on the final dielectric properties. In this article, we report the effect of Nb5+ at the Ta5+ site on the BMT structure prepared at four synthesis temperatures (1300, 1400, 1500 and 1600 °C). The analysis has been carried out using the Rietveld technique on the X-ray powder diffraction data. Results suggest that both the preparation temperatures and Nb5+ content have significant effect on the ordering of B cations in the Ba3Mg(Ta1−xNbx)2O9 solid solution. A disordered (cubic) structure is preferred by the 1300 °C compounds. The weight percentage of the ordered (trigonal) phase escalates, for a given composition, with increasing calcination temperature. A fully ordered trigonal arrangement exists only for x = 0.0 and 0.2 compounds calcined at 1600 °C, and the rest are biphasic (cubic and trigonal). The increase in the cubic fraction upon Nb5+ augmentation suggests that the solid solution leans more toward the disordered structural arrangement of B2+ and B5+ cations.  相似文献   

16.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K.  相似文献   

17.
The ferrite system NixCu0.8−xZn0.2Fe2O4 with 0.0 ≤ x ≤ 0.8 was synthesized. XRD measurement confirmed the presence of single-phase spinel structure. The area ratio of Fe3+ at the tetrahedral A- and octahedral B-sites was deduced from the spectral analysis of Mössbauer measurements. The results give evidence that Ni2+ replaces Cu at B-site in the present unit cell. The dielectric properties ?′, ?″, loss tangent tan(δ) and ac conductivity σac have been studied for the prepared samples in the temperature range (300-600 K) and over the frequency range (102 to 105 Hz). The electrical conductivity results revealed a semiconductor behavior with increasing nickel concentration with a change in the slope at the transition temperature Tc. The variation of the dielectric parameters (?′, ?″ and tan(δ)) with frequency and temperature displayed a strong dependence on nickel concentration. Dielectric anomaly at the transition temperature Tc was pronounced in the relations of ?′ and ?″ with temperature. The determined Tc was found to increase with increasing Ni content. The relation of tan(δ) with frequency at different temperatures showed two relaxation processes where the relaxation time and maximum frequency of the hopping conduction mechanism were determined. The results are explained in the light of cation-anion-cation and cation-cation interactions over the octahedral site in the spinel structure.  相似文献   

18.
(50−x)Na2O-xCuO-10Bi2O3-40P2O5 glasses (0≤x≤25) were prepared by melting at 900-1100°C mixtures of Na2CO3, Bi2O3, CuO and (NH4)2HPO4. DSC measurements give the variation of glass transition temperature Tg from 318 (x=0) to 378°C (x=25). FTIR spectroscopy shows the evolution of the phosphate skeleton: (PO3) chains for 60Na2O-40P2O5 to P2O7 groups in the glass containing Bi2O3 or both Bi2O3 and CuO. When bismuth and copper oxides replace Na2O, phosphate chains are depolymerized by the incorporation of Bi2O3 and CuO through POBi and POCu bonds. P2O7 groups are predominant structural units in the richest CuO glass. The variation of Tg also supports these results.  相似文献   

19.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

20.
The electrical conductivity of SrSn1−xFexO3−δ increases with the Fe content and reaches a value of ∼10−1 S/cm at 25°C at x=1. Compounds with low Fe content exhibit both ionic and electronic conductivity, while the higher Fe content perovskites are mainly electronic conductors with a conductivity independent of the oxygen partial pressure over a wide range from 0.21 to 10−22 atm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号