首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the present study, a high Mn twinning induced plasticity (TWIP) steel and two Al-added TWIP steels were fabricated, and their microstructures, tensile properties, and cup formability were analyzed to investigate the effects of Al addition on deformation mechanisms in tensile and cup forming tests. In the high Mn steel, the twin formation was activated to increase the strain hardening rate and ultimate tensile strength, which needed the high punch load during the cup forming test. In the Al-added TWIP steels, the twin formation was reduced, while the slip activation increased, thereby leading to the decrease in strain hardening rate and ultimate tensile strength. As twins and slips were homogeneously formed during the tensile or cup forming test, the punch load required for the cup forming and residual stresses were relatively low, and the tensile ductility was sufficiently high even after the cup forming test. This indicated that making use of twins and slips simultaneously in TWIP steels by the Al addition was an effective way to improve overall properties including cup formability.  相似文献   

2.
基于Gleeble-1500热力模拟试验机测定了Fe-22Mn-0.7C TWIP钢和Q235钢700~1300℃范围内的静态拉伸行为.采用光学显微镜、扫描电子显微镜、能谱仪、电子探针微区分析等技术表征两钢种不同温度下的变形特征和断口形貌.通过分析基体化学成分、相体积分数、晶粒尺寸、凝固缺陷等因素探讨TWIP钢铸态热塑性的变化规律及其影响机制.研究结果表明,Fe-22Mn-0.7C TWIP钢700~1250℃范围内的铸态抗拉强度高于Q235,而其断面收缩率低于40%,且断口均以沿枝晶间断裂方式为主.晶粒细化和控制溶质显微偏析有利于提高TWIP钢热塑性,与基体均质性改善有关.此外,增加应变速率TWIP钢拉伸强度和断面收缩率同时增大.   相似文献   

3.
 采用真空熔炼法制备Fe-20Mn-3.0Cu-XC系高强度高塑性合金钢,通过X射线衍射(XRD)、光学显微镜(OM)和透射电子显微镜(TEM)观察方法研究了碳含量对该系列合金微观组织和力学性能的影响,分析了合金的拉伸变形微观机制。结果表明:Fe-20Mn-3.0Cu-XC系合金拉伸变形前后均为单相奥氏体组织,未发生马氏体相变。随着碳质量分数的增加,合金的屈服强度、抗拉强度和伸长率均显著提高。Fe-20Mn-3.0Cu-1.41C合金的屈服强度为501.62MPa,抗拉强度为1178.4MPa,具有优异的综合力学性能。Fe-20Mn-3.0Cu-XC系合金具有优异的应变硬化能力。随着碳质量分数增大至1.41%,最大应变硬化指数n值达到0.782。Fe-20Mn-3.0Cu-XC系合金拉伸变形过程中,TWIP效应是主要的塑性变形机制,大量位错的塞积、形变孪晶的形成以及位错与孪晶间的交互作用共同引起材料强度和塑性的提高。  相似文献   

4.
In Twinning Induced Plasticity (TWIP) steels, delayed fracture occurs due to residual stresses induced during deep drawing. In order to investigate the relation between residual stresses and delayed fracture, in the present study, residual stresses of deep drawn TWIP steels (22Mn-0.6C and 18Mn-2Al-0.6C steels) were investigated using the finite element method (FEM) and neutron diffraction measurements. In addition, the delayed fracture properties were examined by dipping tests of cup specimens in the boiled water. In the FEM analysis, the hoop direction residual stress was highly tensile at cup edge, and the delayed fracture was initiated by the separation of hoop direction and propagated in an axial direction. According to the neutron diffraction analysis, residual stresses in 18Mn-2Al-0.6C steel were about half the residual stresses in 22Mn-0.6C steel. From the residual strain measurement using electron back-scatter diffraction, formation of deformation twins caused a lot of grain rotation and local strain at the grain boundaries and twin boundaries. These local residual strains induce residual stress at boundaries. Al addition in TWIP steels restrained the formation of deformation twins and dynamic strain aging, resulting in more homogeneous stress and strain distributions in cup specimens. Thus, in Al-added TWIP steels, residual stress of cup specimen considerably decreased, and delayed fracture resistance was remarkably improved by the addition of Al in TWIP steels.  相似文献   

5.
蒋建华  丁毅  陈云龙  单爱党 《钢铁》2011,46(11):77-81
 利用金相显微镜、X射线衍射仪和透射电子显微镜对异步轧制及热处理TWIP钢的力学性能与微观组织进行了研究。结果表明,TWIP钢经500℃异步轧制后强度显著提高,而塑性降低,这是位错与孪晶共同作用的结果。轧制后的热处理降低了位错密度以及变形孪晶数量,导致强度降低,伸长率升高。经600℃和700℃退火后,TWIP钢表现出良好的强度和塑性综合性能。因此,异步轧制后热处理是获得具有优良综合力学性能TWIP钢的可行途径。  相似文献   

6.
By using a static and high-speed material testing machine,tensile deformation behaviors of two kinds of SiMn TRIP(transformation induced plasticity)steels and DP(dual phase)steel were studied in a large range of strain rates(0.001-2 000s-1).Temperature variation during adiabatic heating and the amount of retained austenite at fracture were measured by an infrared thermometer and an X-ray stress analyser,respectively.The microstructure of steels was observed by optical microscopy(OM)and scanning electron microscopy(SEM)before and after tensile test.It was found from the experimental results that the tensile strength of these steels increased,and the fracture elongation firstly decreased and subsequently increased,as the strain rate increased in the range of 0.1-2 000s-1.The temperature raised during adiabatic heating of TRIP steel was in the range of 100-300℃,while that of the DP steel was in the range of 100-220 ℃.The temperature rise of these steels increased with increasing the strain rate,as well as the amount of the transformed retained austenite in TRIP steels.It was confirmed that austenite to martensite transformation is not suppressed by adiabatic heating.  相似文献   

7.
Car bodies are increasingly made with high‐strength steels, for both lightweighting and safety purposes. Steel sheets, made by continuous casting, hot rolling, cold rolling, and continuous heat treating, are used to deep draw the car body parts, which are then joined by resistance spot welding (RSW). Two high‐strength automotive steels, with similar tensile strength, are studied here. The low alloy, dual‐phase steel consist of ferrite and martensite, obtained by an intercritical heat treatment, followed by fast cooling. The innovative, high‐Mn TWIP steel exhibits a promising combination of strength and toughness, arising from the austenitic structure, strengthened by C, and from the twinning induced plasticity effect. Tensile specimens are fatigue tested at room temperature with zero load ratio, both in the as‐fabricated (unnotched) condition and after the RSW of an homologous sheet square. Moreover, pre‐cracked compact tension specimens are tested with load ratio 0.1 to determine the fatigue crack growth behavior. These results are completed with crystallographic, microstructural, tensile, and fractographic examinations, and the influence of the microstructure and of the welding process is discussed.  相似文献   

8.
The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s?1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s?1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into consideration, Fe-22Mn-0.4C TWIP steel shows excellent mechanical performance with a high product of tensile strength and total elongation and a slightly serrated stress–strain response. To suppress the negative effect of DSA in Fe-Mn-C TWIP steels on the stability of tensile behavior, a TOI lower than 0.1 is strongly suggested.  相似文献   

9.
高强度高塑性TWIP钢的开发研究   总被引:16,自引:4,他引:12  
米振莉  唐荻  严玲  郭锦 《钢铁》2005,40(1):58-60
通过调整成分,研究了一种新型的高锰钢成分对组织结构和TWIP效应以及对强度、塑性的影响。结果表明,该钢在变形后基体中存在大量细小的形变孪晶,室温下可具有相变诱导塑性和孪晶诱导塑性的TWIP效应,因而具有高的强度(1000MPa以上)和极高的伸长率(60%~90%)。该钢种是很有前途的高强度、高塑性钢种,满足下一代汽车制造对钢铁材料的需求。  相似文献   

10.
陈雷  张英杰  李飞  裴建明  宋雷钧  金淼 《钢铁》2017,52(4):55-60
 通过微拉伸、电子背散射(EBSD)、透射电子显微镜(TEM)等手段,研究了具有亚稳奥氏体相的节约型双相不锈钢在1 000~1 200 ℃范围内不同固溶温度下的组织与性能的演变规律;探讨了固溶温度对形变诱导塑性(TRIP/TWIP)的作用机制。结果表明,随着固溶温度的升高,抗拉强度与伸长率均先升高后降低,而亚稳奥氏体相比例由74%(1 000 ℃)降低到37%(1 200 ℃);1 050 ℃固溶时,试验钢表现出最佳综合性能,抗拉强度达到960 MPa,伸长率达到62%,强塑积达到60 GPa·%。在经拉伸变形的微观结构中形变诱导马氏体与形变孪晶共存,表明试验钢中亚稳奥氏体相的变形机制主要受TRIP及TWIP共同控制,从而导致其塑性变形过程呈现多阶段应变硬化特征,而钢中铁素体相的变形机制主要变形为位错的滑移。  相似文献   

11.
Herein, twinning-induced plasticity (TWIP) steel having large deformation is rolled at different rolling temperatures to improve the tensile strength and retain a certain plastic deformation capacity. Based on X-ray diffraction and transmission electron microscope analysis, β-Mn is found as the precipitate at the grain boundary during the warm-rolling process (500–650 °C). To investigate the impact of β-Mn on the tensile properties, the microstructure of the TWIP steel rolled at the temperature value of 600 °C is observed by carrying out electron backscatter diffraction and scanning electron microscope measurements. The intergranular β-Mn phase can help the material to accumulate geometric necessary dislocation (GND) density, inhibit crack propagation, as well as improve the strength and plasticity of the material. Once TWIP steel is warm-rolled above the temperature value of 600 °C, and serrated flow appears in the tensile process, which is also conducive to improving the material properties.  相似文献   

12.
TWIP (TWinning Induced Plasticity) steel is one of the advanced steels with attractive mechanical properties.The typical composition of TWIP steel includes a large amount of manganese with some aluminum and silicon.Previous study has shown that TWIP steel exhibits high strength with adequate elongation at high strain rates,so that TWIP steel is desired to be applied for automotive use.However,there are few studies concerning the deformation behaviors aimed to make clear the TWIP effect in TWIP steel.In this study,static tensile deformation behaviors of an Fe-30Mn-3Al-3Si TWIP steel and a SUS310S one were studied by in situ neutron diffraction during tensile deformation.In terms of mechanical properties obtained by the static tensile tests,the TWIP steel showed better balance of tensile strength and uniform elongation than the 310S steel.The angular dispersion neutron diffraction with a wavelength of 0.16 nm was performed during stepwise tensile testing by using a neutron diffractometer for residual stress analysis (RESA) at the Japan Atomic Energy Agency.A specimen was extended in a step by step manner and neutron diffraction profiles of (111),(200) and (311) for austenite were obtained at each step.The diffraction peak,lattice plane spacing,lattice plane strain and so on were determined by the profile analysis as a function of applied stress.The changes of lattice plane strain for austenite in the TWIP and 310S steels indicated several deformation stages in the tensile deformation and can be discussed the difference of intergranular stress between the two samples.  相似文献   

13.
The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.The optical microscopy was used to analyze the evolution of microstructure.The variation of composition and phase structure of fusion zone were detected by energy dispersive X-ray and X-ray diffraction spectrometers.The micromechanical behaviors of the various zones were characterized using nanoindentation.The static tensile test and high cycle fatigue test were performed to evaluate the mechanical properties of welded joint and base metal.The microstructures,tensile properties and fatigue strength of base metal as well as welded metal were analyzed.The fatigue fracture surfaces of base metal and welded joint were observed by means of scanning electron microscopy,in order to identify fatigue crack initiation sites and propagation mechanisms.Moreover,the fatigue fracture characteristics and mechanisms for the laser welded TWIP steel joints were analyzed.  相似文献   

14.
利用控轧控冷工艺开发了锰质量分数为18.8%的热轧高锰TRIP/TWIP钢板,分析了轧制工艺参数对热轧高锰钢组织和性能的影响,讨论了实验钢的断裂机理。结果表明:通过控轧控冷方法可以热轧出抗拉强度达到940 MPa左右,断裂伸长率在40%以上的高锰钢板。冷却速度和卷取温度等工艺参数对实验钢组织性能影响不是非常明显。高锰钢优异的力学性能是TRIP和TWIP效应共同作用的结果。高锰钢拉伸呈韧性断裂,裂纹多沿奥氏体/马氏体晶界萌生、扩展。  相似文献   

15.
摘要:将质量分数为0.002%的微合金元素B加入至Fe-28Mn-9Al轻质TWIP钢中,以期改善其强塑积及室温冲击性能。利用X射线衍射、扫描电镜、电子万能拉伸试验机和金属摆锤冲击试验机对热轧TWIP钢的物相组成、微观组织、力学拉伸性能及室温冲击韧性进行了研究与分析。结果表明,微合金元素B的添加具有延缓奥氏体向铁素体转变的作用,细化了奥氏体晶粒,提升了钢的力学性能,TWIP钢的塑性、强塑积和冲击韧性均有明显的提高。  相似文献   

16.
《钢铁冶炼》2013,40(7):540-545
Abstract

This paper tracks the progress in research regarding the use of twinning induced plasticity (TWIP) steel in the automobile industry. The chemical composition of TWIP steel ensures that it has stable austenite and proper stacking fault energy at room temperature, allowing the main deformation mechanism (twinning) to work. The effects of alloying elements on the microstructure and deformation mechanism of TWIP steel are explained in detail, and their properties deformed under static and dynamic conditions are examined. The TWIP steel deformed at a low strain rate shows higher total elongation and strength. When the TWIP steel deforms under dynamic strain conditions, the stress, microhardness and the work hardening rate, all increase along with the increase in strain and the strain rate. The twin characteristics of TWIP steels deformed at various strain rates vary also and the twins generated under a high strain rate exhibit thinner widths and smaller interspaces compared with those formed under a low strain rate. It has also been observed that multisystem twins are able to generate and develop together. The mechanisms of toughening and strengthening in TWIP steels are noted. Finally, some potential application fields have been found for the promising material.  相似文献   

17.
The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing.The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined.High strength and good ductility of the steel were found.In the grain size range,the Hall-Petch dependency for yield stress,tensile strength,and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel.In the present study,the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined.The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.  相似文献   

18.
Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scanning electron microscopy,electron back-scattered diffraction,transmission electron microscopy,X-ray diffraction and tensile test.It was found that the microstructure of the high manganese steel was refined by the Nb addition.Moreover,steel with Nb addition has a higher stacking fault energy which favors the deformation twinning.Twinning is the most important deformation mechanism in the Nb-bearing steel.Therefore,steel with Nb addition has much higher strength and higher plasticity.The product of tensile strength and total elongation exceeds 61.8 GPa·%.In addition,steel with Nb addition also has excellent non-magnetic property.  相似文献   

19.
Twinning induced plasticity (TWIP) steels, which rely on high Mn contents to promote twinning as the deformation mechanism, exhibit high ultimate strengths together with outstanding combinations of ultimate strength and ductility. In terms of mechanical properties, one of the most important microstructural features is grain size. The knowledge of the kinetics of recrystallization mechanisms, i.e., dynamic recrystallization (DRX) and static recrystallization (SRX), can be used in order to control the grain size of the final product by a proper rolling schedule design. The focus of this work is the characterization of the DRX kinetics of two TWIP steels. The basic composition of the steels is Fe–21Mn–0.4C–1.5Al–1.5Si, and one of them is further alloyed with 0.12% V. With this objective, compression tests were carried out at 900, 1000, and 1100°C and strain rates ranging from 1 × 10?1 s?1 to 1 × 10?4 s?1. Furthermore, metallographic observation by optical microscopy (OM) was done to assess the evolution of grain size for the different deformation conditions. According to the results, the existence of V in the composition does not affect the hot flow behavior of the steel, although recrystallization fraction and recrystallized grain size decrease for the V‐containing steel.  相似文献   

20.
The mechanical and deformation microstructure properties of the Fe–Mn–C TWIP steel was investigated by means of tensile experiment, in situ scanning electron microscope (SEM) and transmission electron microscope (TEM).The results showed that the sample has excellent mechanical with tensile strength of the steel is about 1140 MPa and the yield strength is higher than 480 MPa, while the elongation is above 57%, the true stress–strain curve from tension tests exhibited repeated serrations and its strain‐hardening rate is constantly changing. It is found that there were different deformation mechanisms at different deformation stages result in the unique true stress–strain curve. Dislocation slip dominated the initial deformation and with the accumulation of deformation stress concentration reached the twin shear stress resulting in twin shear, which lead to TWIP effect. As the strain capacity increased continually, the parallel twins can no longer rotate and shear deformation occurred, which lead to the forming of shear bands. The intercoordination of slip deformation, twin deformation, and shear deformation mechanism make the TWIP steel show high strength and high plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号