首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The adsorption of ethanol/cyclohexane binary mixtures on different types of activated carbons was studied in this work by temperature programmed desorption coupled with mass spectroscopy (TPD-MS). The texture, morphology and surface chemistry of the carbons were evaluated by N2 adsorption, scanning electron microscopy (SEM) and TPD-MS techniques. The ethanol and cyclohexane TPD-MS desorption profiles showed that specific interactions between the carbon material and the adsorbate are involved during the adsorption. Most of the activated carbons adsorb strongly ethanol on the surface, leading to desorption temperatures above 100 °C. Only one carbon exhibits an affinity for cyclohexane. These observations were correlated to the different surface chemistry of the materials.  相似文献   

2.
In order to address open questions concerning the surface chemistry and pore structure characterization of nanoporous carbons, we performed extensive experiments by combining various experimental techniques on a series of commercially available activated carbons which exhibit diverse surface chemistry characteristics. Pore size analysis was performed on Ar (87 K), N2 (77 K) and CO2 (273 K) adsorption isotherms using state-of-the art methods based on density functional theory, including the recently developed quenched solid density functional theory (QSDFT). A detailed study of the surface chemistry was obtained by applying temperature programmed desorption coupled with mass spectrometry (TPD-MS) as well as XPS (X-Ray-Photoelectron Scattering). This information together with the pore structure information leads to a reliable interpretation of systematic water adsorption measurements obtained on these materials. Our results clearly suggest that water adsorption is indeed a sensitive tool for detecting differences in surface chemistry between chemically and physically activated active carbon materials with comparable ultramicropore structure. The occurrence of sorption hysteresis associated with the filling of micro- and narrow mesopores (in a range where nitrogen and argon isotherms are reversible) provides additional structural information, complementary to the insights from argon/nitrogen/carbon dioxide adsorption.  相似文献   

3.
Steam-activated carbons DS2 and DS5 were prepared by gasifying 600 °C-date pits carbonization products with steam at 950 °C to burn-off = 20 and 50%, respectively. The textural properties of these carbons were determined from the nitrogen adsorption at ?196 °C. The chemistry of the carbon surface was determined from the surface pH and from neutralization of the surface carbon–oxygen groups of basic and acidic type. The kinetic and equilibrium adsorption of MB and RY on DS2 and DS5 was determined at 27 and 37 °C and at initial sorption solution pH 3–7.DS2 and DS5 have expanded surface area, large total pore volume and contain both micro and mesoporosity. They have on their surface basic and acidic groups of different strength and functionality. This enhanced the sorption of the cationic dye (MB) and of the anionic dye (RY). The adsorption of MB and RY on DS2 and DS5 involves intraparticle diffusion and followed pseudo-second order kinetics. The adsorption isotherms were applicable to the Langmuir isotherm and high monolayer capacities for MB and RY dyes were evaluated indicating the high efficiencies of the carbons for dye adsorption.  相似文献   

4.

The change in the thermodynamic properties of triclosan adsorption on three activated carbons with the different surface chemistry was studied through immersion calorimetry and equilibrium data; the amount adsorbed of triclosan (Q) during calorimetry was determined and correlated with the energy associated with adsorbate–adsorbent interactions in the adsorption process. It was noted that triclosan adsorption capacity decreases with an increase in oxygenated surface groups. For an activated carbon oxidized with HNO3 (OxAC), the amount adsorbed was 8.50?×?10?3 mmol g?1, for a activated carbon without modification (GAC) Q?=?10.3?×?10?3 mmol g?1 and for a activated carbon heated at 1073 K (RAC1073) Q?=?11.4?×?10?3 mmol g?1. The adsorbed amounts were determined by adjusting the isotherms to the Sips model. For the activated carbon RAC1073, the immersion enthalpy (ΔHimm) was greater than those of the other two activated carbons due to the formation of interactions with the solvent (ΔHimmOxAC?=?? 27.3 J g?1?<?ΔHimmGAC?=?? 40.0 J g?1?<?ΔHimm RAC1073?=???60.7 J g?1). The changes in the interaction enthalpy and Gibbs energy are associated with adsorbate–adsorbent interactions and side interactions such as the adsorbate–adsorbate and adsorbate–solvent interactions.

  相似文献   

5.
Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g?1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g?1 of methyl orange by activated carbon was achieved.  相似文献   

6.
In this study, novel corn grains-based activated carbons (CG-ACs) were prepared and their use as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The structural properties, energetic heterogeneities and surface functional groups of CG-ACs were characterized using different techniques like nitrogen sorption data, adsorption energy distribution (AED) and X-ray photoelectric spectroscopy (XPS). The electrochemical properties of various CG-ACs were evaluated by using cyclic voltammetry. The maximum specific capacitance value as 257 F g−1 was obtained in 6 M KOH electrolyte solution. The effects of various properties of the porous carbon materials on the EDLC performance were discussed.  相似文献   

7.
CO2 capture and conversion are still a favorable way to reduce CO2 in the atmosphere. Herein, we have developed an environmentally friendly, low energy consumption porous activated carbon from vitamin B9 carbonaceous material for CO2 capture and conversion materials. It is demonstrated that the KOH/vitamin B9 carbonaceous material impregnation ratio of 2 is the optimum condition for obtaining porous activated carbons with high specific surface area of 1903 m2g-1, micropore surface area of 710 m2g-1, total pore volume of 1.05 cm3g-1 and micropore volume of 0.38 cm3g-1. Among all the porous activated carbons prepared, the porous activated carbon synthesized with the KOH/vitamin B9 carbonaceous material impregnation ratio of 2 registers the most excellent CO2 capture for 5.41 mmolg?1 at 0 °C/1 bar and 3.66 mmolg?1 at 25 °C/1 bar. They can also effectively catalyze the cycloaddition of CO2 and epoxides under mild conditions (1 bar, 100 °C and 8 h) with a yield of 89–94%. The synthesized porous carbon materials from vitamin B9 is a promising candidate material for CO2 capture and fixation.  相似文献   

8.
The objective of this study is to find optimum preparation conditions in converting teak wood waste into activated carbon (TWAC) and to evaluate its performance in adsorbing cationic dye of methylene blue (MB). TWAC was produced via physiochemical activation (potassium hydroxide, KOH chemical treatment, and carbon dioxide, CO2 gasification) and heated through microwave irradiation technique. With the aid of response surface methodology (RSM), optimized TWAC was successfully synthesized at radiation power, radiation time, and impregnation ratio (IR) of 366 W, 5.30 min, and 1.15 g/g, respectively. These preparation conditions produced TWAC with MB adsorption uptakes of 66.69 mg/g and a yield of 38.23%. Characteristics of TWAC in terms of BET surface area, mesopores surface area, total pore volume, and average pore diameter were determined to be 1345.25 m2/g, 878.63 m2/g, 0.6140 cm3/g, and 2.85 nm, respectively. Isotherm studies divulged that the MB-TWAC adsorption system followed the Langmuir model with a maximum monolayer adsorption capacity of 567.52 mg/g. In terms of kinetic studies, this adsorption system fit pseudo-second order model the best whereas Boyd plot confirmed that the adsorption process was controlled by the film diffusion mechanism. Thermodynamic parameters of enthalpy change, ΔH°, entropy change, ΔS°, Gibbs free energy, ΔG° and Arrhenius activation energy, Ea were calculated to be ?4.06 kJ/mol, 0.06 kJ/mol.K, –22.69 kJ/mol and 16.03 kJ/mol, respectively. The activation and microwave heating methods employed succeeded to produce TWAC with excellent adsorption performance in removing MB dye. TWAC was also successfully regenerated for 5 cycles via microwave heating technique.  相似文献   

9.

The efficiency of activated carbons prepared from corncob, to remove asphaltenes from toluene modeled solutions, has been studied in this work. The activating agent effect over carbonaceous solid preparation , and also temperature effect on the asphaltenes adsorption on the prepared activated carbons, was studied. The asphaltene adsorption isotherms were determined, and the experimental data were analyzed applying the Langmuir, Freundlich, Redlich–Peterson, Toth and Radke–Prausnitz and Sips models. Redlich–Peterson model described the asphaltenes isotherm on the activated carbons better. The asphaltenes adsorption capacities at 25° for activated carbons were: 1305 mg g?1, 1654 mg g?1 and 559.1 mg g?1 for GACKOH, GACKP and GACH3PO4, respectively. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated from the adsorption isotherms in asphaltene solutions from toluene solutions, and it was found that the adsorption process was spontaneous and exothermic in nature. Kinetic parameters, reaction rate constant and equilibrium adsorption capacities were evaluated and correlated for each kinetic model. The results show that asphaltene adsorption is described by pseudo-second-order kinetics, suggesting that the adsorption process is chemisorption. The adsorption calorimetry was used to analyze the type of interaction between the asphaltenes and the activated carbons prepared in this work, and their values were compared with the enthalpic values obtained from the Clausius–Clapeyron equation.

  相似文献   

10.
The adsorption of colored compounds from the textile dyeing effluents of Bangladesh on granulated activated carbons produced from indigenous vegetable sources by chemical activation with zinc chloride was studied. The most important parameters in chemical activation were found be the chemical ratio of ZnCl2 to feed (3:1), carbonization temperature (450-465 °C) and activation time (80 min). The adsorbances at 511 nm (red effluent) and 615 nm (blue effluent) were used for color estimation. It is established that at optimum temperature (50 °C), time of contact (30-40 min) and adsorbent loading (2 g l−1), activated carbons developed from Segun saw-dust and water hyacinth showed substantial capability to remove coloring materials from the effluents. It is observed that adsorption of reactive dyes by all sorts of activated carbons is higher than disperse dyes. It is explained that activated carbon, because of its acidic nature, can better adsorb reactive dye particles containing large number of nitrogen sites and -SO3Na group in their structure. The use of carbons would be economical, as saw-dust and water hyacinth are waste products and abundant in Bangladesh.  相似文献   

11.
以四种离子交换树脂(两种强碱性树脂D201和D280、两种弱碱性树脂D301G和D301R)为原料,经过磺化、炭化、活化处理制备了树脂基球状活性炭。采用TG、SEM、N2吸附等对球状活性炭的收率、表面形貌、比表面积进行了表征,研究了所制球状活性炭对CO2的吸附性能。结果表明,磺化处理有助提高树脂球的炭化收率;得到的四种球状活性炭对CO2吸附性能良好,强碱性树脂球原料比弱碱性树脂球更具有优势,其中,由强碱性树脂球D201制得的树脂球状活性炭在30 ℃下对CO2的吸附量可达2.57 mmol/g;十次循环吸附之后,树脂球仍能保持很好的CO2吸附性能。  相似文献   

12.
This study presents an experimental and theoretical analysis of the effect of surface heterogeneity on the capacity of 20 commercial activated carbons to adsorb hydrogen at 77 and 258 K and for maximum pressures of 20 bar. Some of the samples have been subjected to surface modification by impregnation or by surface oxidation prior to the hydrogen adsorption measurements. All the activated carbons have been analyzed by N2 adsorption at 77 K using the thermodynamic isotherm presented in a previous study. The hydrogen adsorption capacity of the activated carbons has been well correlated to the micropore volume and the characteristic m2 parameter of the thermodynamic isotherm accounting for the energy heterogeneity of the material. On the basis of the model presented here, we discuss how surface heterogeneity, in addition to the adsorption strength, might affect the ability of activated carbons and related materials to adsorb hydrogen.  相似文献   

13.
Mesoporous carbons with differentiated properties were synthesized by using the method of impregnation of mesoporous well-organized silicas. The obtained carbonaceous materials and microporous activated carbon were investigated by applying different methods in order to determine their structural, surface and adsorption properties towards selected dyes from aqueous solutions. In order to verify applicability of adsorbents for removing dyes the equilibrium and kinetic experimental data were measured and analyzed by applying various equations and models. The structural and acid-base properties of the investigated carbons were evaluated by Small-Angle X-ray Scattering (SAXS) technique, adsorption/desorption of nitrogen, potentiometric titration, and Transmission Electron Microscopy (TEM). The results of these techniques are complementary, indicating the type of porosity and structural ordering, e.g., the pore sizes determined from the SAXS data are in good agreement with those obtained from nitrogen sorption data. The SAXS and TEM data confirm the regularity of mesoporous carbon structure. The adsorption experiment, especially kinetic measurements, reveals the utility of mesoporous carbons in dye removing, taking into account not only the adsorption uptake but also the adsorption rate.  相似文献   

14.
The retention of Co2+, Ni2+ and Cu2+ metal ions from aqueous solution, on a functionalized hybrid material obtained by the anchorage of N-(4-amino-1,6-dihydro-1-methyl-5-nitroso-6-oxopyrimidin-2-yl)-N′-[bis(2-aminoethyl)] ethylenediamine ligand on a low-functionalized activated carbon, at pH 4.5 has been studied. The adsorption isotherms fit the Langmuir equation and the calculated maximum adsorption capacities were compared to those obtained by using the un-functionalized activated carbon as well as to other analogous hybrid materials as adsorbent of the same metal ions. These studies were carried out by rationalizing the resulting adsorption data regarding the stability constant values of the complexes formed by the three metal ions with the free tri-amine function of the ligand. The results demonstrate that the adsorption capacities of the activated carbon–ligand hybrid material towards the three metal-ions studied correlated with the stabilities of the tri-amine-metal-ion bonds formed during the adsorption processes.  相似文献   

15.
有序介孔碳的简易模板法制备与电化学电容性能研究   总被引:8,自引:0,他引:8  
0引言电化学电容器(Electrochemical Capacitors),又称为超级电容器(supercapacitors)是介于传统电容器和二次电池之间的一种新型储能装置,它具有循环寿命长、比容量高、能快速充放电等优点[1,2]。近年来随着电子、电气设备的日趋小型化以及电动汽车工业的不断发展,作为后备电源和记忆候补装置的超级电容器日益引起了人们的广泛关注。碳材料由于具有成本低、比表面积大、导电性优良、制备电极工艺简单等特点,一直是超级电容器电极材料的首选。其中,活性炭是最早采用的多孔电极材料,其比表面积可高达2500 ̄3000m·2g-1[3]。然而,活性炭材料…  相似文献   

16.
Oil-palm shells, a biomass by-product from palm-oil mills, were converted into activated carbons by vacuum or nitrogen pyrolysis, followed by steam activation. The effects of pyrolysis environment, temperature and hold time on the physical characteristics of the activated carbons were studied. The optimum pyrolysis conditions for preparing activated carbons for obtaining high pore surface area are vacuum pyrolysis at a pyrolysis temperature of 675 °C and 2 h hold time. The activation conditions were fixed at a temperature of 900 °C and 1 h hold time. The activated carbons thus obtained possessed well-developed porosities, predominantly microporosities. For the pyrolysis atmosphere, it was found that significant improvement in the surface characteristics of the activated carbons was obtained for those pyrolysed under vacuum. Adsorption capacities of activated carbons were determined using phenol solution. For the activated carbons pyrolysed under optimum vacuum conditions, a maximum phenol adsorption capacity of 166 mg/g of carbon was obtained. A linear relationship between the BET surface area and the adsorptive capacity was shown.  相似文献   

17.
Carbon materials enriched with nitrogen and oxygen surface functional groups were obtained by pyrolyzing strained beer yeast at 750 °C under an inert atmosphere. Physical and surface properties of the carbon obtained were characterized by X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectrometry, and X-ray photoelectron spectroscopy. Results show that the carbon possesses an amorphous structure, a spherical morphology, and a high density of surface functional groups. Electrochemical properties were evaluated by cyclic voltammetry, a galvanostatic charge–discharge technique, and electrochemical impedance spectroscopy. The carbon has 989.65 mAh·g−1 of initial discharge capacity and a stable cycle performance for a Li–C cell. A specific capacitance of 120 F·g−1 was obtained for a single carbon electrode and good cycle performance was achieved for a symmetrical supercapacitor fabricated using this carbon. These carbons derived from strained beer yeast have promising applications in energy storage and conversion systems.  相似文献   

18.
Resorcinol and formaldehyde were used as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer was employed as a soft template, and tetraethylorthosilicate-generated silica was used as hard templates to synthesize spherical mesoporous carbon. The resulting spherical mesoporous carbons were characterized by nitrogen adsorption–desorption isotherms and electron microscopy (SEM and TEM) and used as electrode materials for aqueous electric double-layer capacitors. The average diameters of spherical particles ranged from 2 to 7 μm and the mesopore was ca 2 nm. The highest specific surface area of 1,000 m2/g and mesopore volume of 0.86 cm3/g was obtained. The specific capacitance of 130 F/g was obtained by means of galvanostatic charging/discharging and cycle voltammetry.  相似文献   

19.
Microporous- and mesoporous-activated carbons were produced from longan seed biomass through physical activation with CO2 under the same activation conditions of time and temperature. The specially prepared mesoporous carbon showed the maximum porous properties with the specific surface area of 1773 m2/g and mesopore volume of 0.474 cm3/g which accounts for 44.1% of the total pore volume. These activated carbons were utilized as porous adsorbents for the removal of methylene blue (MB) from an aqueous solution and their effectiveness was evaluated for both the adsorption kinetics and capacity. The adsorption kinetic data of MB were analyzed by the pseudo-first-order model, the pseudo-second-order model, and the pore-diffusion model equations. It was found that the adsorption kinetic behavior for all carbons tested was best described by the pseudo-second-order model. The effective pore diffusivity (De) derived from the pore-diffusion model had the values of 4.657 × 10−7–6.014 × 10−7 cm2/s and 4.668 × 10−7–19.920 × 10−7 cm2/s for the microporous- and mesoporous-activated carbons, respectively. Three well-known adsorption models, namely the Langmuir, Freundlich and Redlich–Peterson equations were tested with the experimental MB adsorption isotherms, and the results showed that the Redlich–Peterson model provided the overall best fitting of the isotherm data. In addition, the maximum capacity for MB adsorption of 1000 mg/g was achieved with the mesoporous carbon having the largest surface area and pore volume. The initial pH of MB solution had virtually no effect on the adsorption capacity and removal efficiency of the methylene blue dye. Increasing temperature over the range from 35 to 55 °C increased the adsorption of methylene blue, presumably caused by the increase in the diffusion rate of methylene blue to the adsorption sites that could promote the interaction frequency between the adsorbent surface and the adsorbate molecules. Overall, the high surface area mesoporous carbon was superior to the microporous carbon in view of the adsorption kinetics and capacity, when both carbons were used for the removal of MB from an aqueous solution.  相似文献   

20.
Quercus mongolica leaf (QL), an easily available biomass, was used as the precursor for preparing the hierarchical porous carbon with a large specific surface area and high adsorption capacities toward the representative dye and antibiotic. After being carbonized, QL was further chemically activated, and potassium hydroxide was proved to be a better activator than sodium hydroxide. The QL-derived porous carbon (PCQL) exhibited abundant micro- and mesopores, and the specific surface area reached 3275 m2 g?1. The performances of PCQL were evaluated through adsorbing rhodamine B (RhB) and tetracycline hydrochloride (TC) from water. Four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich-Peterson models), three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), and the thermodynamic equations were used to investigate the adsorption processes. The pseudo-second-order kinetic model and the Sips isotherm model fitted the experimental data well, which indicates that the adsorption processes were controlled by the amount of adsorption active sites on the surface of PCQL, and these adsorption active sites had different affinities for the adsorbates. The maximum adsorption capacities of PCQL toward RhB and TC were 1946.0 and 1479.6 mg g?1, respectively, based on the Sips model. The thermodynamic analysis indicates that the adsorption of PCQL toward adsorbents was spontaneous physical processes accompanied by the increasing disorder degree. The adsorption mechanism was attributed to the combination of the pore-filling, hydrogen bond, and π-π interactions. Moreover, in the fixed-bed experiments, the Yoon-Nelson model fitted the breakthrough curves well, and about 8 L wastewater containing RhB (200 mg L?1) may be effectively treated by 1.0 g of PCQL. Above results indicate that QL is a promising precursor for preparing functional porous carbon materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号