首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
铁基合金激光熔覆层的高温磨损性能   总被引:4,自引:3,他引:1       下载免费PDF全文
 为提高40Cr钢表面耐磨性,采用预置激光熔覆法在40Cr基体表面制备Fe基涂层,利用HT-500摩擦磨损实验机测定干摩擦条件下,基体和熔覆层的摩擦因数随温度变化的规律。利用表面粗糙度轮廓仪测量磨痕的深度和宽度,SEM观察熔覆层以及磨痕的显微组织形貌,使用HV-1000型显微硬度仪检测基体和熔覆层结合部分的硬度。研究结果表明:熔覆层平均显微硬度值达到373.8HV(0.2);显著高于基体硬度198.4HV(0.2)。在干摩擦条件下,随着温度升高,磨损过程逐渐变平缓,平均摩擦因数降低,磨损率增加,耐磨性下降;在350~400 ℃之间,熔覆层磨损性能优于基体。  相似文献   

2.
铁基合金激光熔覆层高温润滑磨损性能   总被引:4,自引:4,他引:0       下载免费PDF全文
 为提高40Cr合金钢的表面耐磨性,采用预置激光熔覆法在40Cr基体表面制备铁基合金涂层, 利用扫描电镜观察分析熔覆层显微组织形貌,用显微硬度仪测试熔覆层截面显微硬度,用摩擦磨损试验机测定在润滑条件下基体、熔覆层的摩擦系数随温度变化的规律。研究结果表明:熔覆层与基体实现良好冶金结合,熔覆层横截面微观组织呈现平面晶、树枝晶和胞状晶分布;熔覆层硬度值介于617.5~926.6 HV0.2之间,基体硬度介于205.2~278.2 HV0.2之间;在200 ℃以下,熔覆层摩擦系数在磨程中趋于平稳,在0.1附近轻微波动,小于基体平均摩擦系数;当温度超过200 ℃,油膜分解,引发润滑失效,磨损方式向干摩擦转化,磨损机理从微切削磨损主导向粘着磨损、磨粒磨损和氧化磨损复合磨损方式转化。  相似文献   

3.
激光熔覆NiCrBSi涂层组织及摩擦磨损性能   总被引:3,自引:0,他引:3  
采用激光熔覆技术在H13钢表面制备了NiCrBSi合金涂层,利用OM,SEM,EDX和XRD等对熔覆层的微观组织进行了分析,测试了熔覆层的显微硬度和摩擦磨损性能。结果表明,激光熔覆层与基体形成了良好的冶金结合,熔覆层的组织主要由γ-Ni,Cr7C3和CrB等相组成。熔覆层显微硬度在650~850HV之间,明显高于H13钢基体的硬度。摩擦磨损实验表明,在相同的条件下,熔覆层的耐磨性比基体有了明显的提高,磨损体积减少了92.4%。通过对磨损后的试样进行粗糙度测试后表明,涂层具有更平滑的表面。  相似文献   

4.
激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究   总被引:6,自引:0,他引:6  
孙荣禄  杨贤金 《光学技术》2006,32(2):287-289
采用激光熔覆技术在TC4合金表面上制备了TiC陶瓷涂层,分析了熔覆层的微观组织,测试了熔覆层的硬度和摩擦磨损性能。结果表明:TiC激光熔覆层分为熔覆区和稀释区两个区域,熔覆区未受到基底的稀释,由TiC颗粒和TiC树枝晶组成;稀释区受到了基底的稀释,由TiC树枝晶和钛合金组成;TiC激光熔覆层的显微硬度在HV700~1500之间,明显地改善了TC4合金表面的摩擦和磨损性能。  相似文献   

5.
采用激光熔覆技术在45钢基体上制备了不同CeO2含量的镍基纳米Al2O3复合涂层,对熔覆层进行了微观组织分析和显微硬度测试。结果表明,随着CeO2含量的增加,熔覆层组织由亚共晶向共晶组织转变;加入1.0%CeO2对镍基纳米Al2O3熔覆层的组织起到明显的细化和净化作用,枝晶生长的方向性减弱,组织趋向均匀,熔覆涂层的显微硬度值比未加稀土的涂层提高了60-95HV0.2。  相似文献   

6.
在TC4合金表面进行了激光熔覆NiCrBSi合金涂层的试验 ,利用SEM和XRD等对熔覆层的微观组织进行了分析 ,测试了熔覆层的显微硬度。结果表明 ,激光工艺参数对熔覆层的组织和硬度有极大的影响 ,随稀释率的增加 ,激光熔覆层中形成了TiB2 和TiC等颗粒增强相 ,熔覆层的硬度明显提高。  相似文献   

7.
研究了直升机涡轮导向器叶片的激光修复技术。以直升机四级涡轮导向器分解叶片为基材,以镍基合金为熔覆材料,在激光功率为1~2kW,扫描速度为2~15mm/s,光斑直径为1~3mm,层厚为0.2~0.6mm的工艺参数条件下,研究熔覆层的表面成形、显微硬度以及微观组织形貌。结果表明,综合叶片宏观形态、硬度分析与扫描电镜分析结果,可以得到组织细密、与基体呈良好冶金结合且无明显微观裂纹的熔覆层。因此,采用激光修复技术对受损涡轮导向器叶片进行修复的方案是可行的。  相似文献   

8.
钛合金表面激光熔覆TiC_p/Ni基合金复合耐磨涂层   总被引:8,自引:2,他引:6  
采用激光熔覆技术在TC4合金表面制备TiC颗粒增强的Ni基合金复合材料涂层,测试了熔覆层的硬度和滑动摩擦磨损性能,分析了熔覆层的强化机制。结果表明,熔覆层中存在颗粒强化、固溶强化和细晶强化等多种强化作用,熔覆层的显微硬度达HV900~1100,耐磨性能比TC4合金显著提高。  相似文献   

9.
为研究激光冲击对E690高强钢激光熔覆修复层微观组织的影响,选用专用金属粉末对E690高强钢试样预制凹坑进行激光熔覆修复,并使用脉冲激光对激光熔覆层进行冲击强化处理,同时采用扫描电镜、透射电镜和X射线应力分析仪分别对激光冲击前后激光熔覆层的微观组织和表面残余应力进行检测。结果表明:激光熔覆修复后,激光熔覆层组织为等轴晶,熔覆层与E690高强钢基体之间冶金结合良好,其表面残余应力为均匀分布的压应力。经激光冲击后,激光熔覆层截面晶粒得到细化,并观察到大量的形变孪晶,互相平行的孪晶界分割熔覆层粗大晶粒,在激光熔覆层的晶粒细化过程中发挥着重要作用;试样表层位错在{110}滑移面上发生交滑移,在晶界周围形成了位错缠结。经激光冲击后,激光熔覆层冲击区域表面残余压应力数值相较于冲击前提升了1.1倍。  相似文献   

10.
郑必举  胡文 《强激光与粒子束》2014,26(5):059003-300
通过脉冲激光器(Nd-YAG)在AZ91D镁合金基底上熔覆Al+SiC粉体。采用扫描电子显微镜、能量色散谱(EDS)和X-射线衍射测定分析熔覆层的显微组织、化学成分和物相组成。研究表明:Al+SiC涂层主要由SiC,β-Mg_(17)Al_(12)及Mg和Al相组成,激光熔覆层与镁合金基底表现出良好的冶金结合。所有样品都具有树枝状结构,且随着SiC质量分数的增大,树枝状和胞状结构的间隔变得更大。熔覆涂层的表面硬度高于基底,并且随着熔覆层中的SiC质量分数的增加而增大,SiC质量分数为40%的熔覆层具有最大的显微硬度,达到180 HV,然而质量分数为10%的熔覆层硬度为136 HV。销盘滑动磨损试验表明,复合涂层中的SiC颗粒和原位合成的Mg_(17)Al_(12)相显著提高了AZ91D镁合金的耐磨损性,其中,SiC质量分数从10%增加到30%过程中磨损体积损失逐渐减少,SiC质量分数在20%~30%时熔覆层具有最好的耐磨性。  相似文献   

11.
激光熔覆硬质合金强化化纤切断刀的研究   总被引:3,自引:0,他引:3  
在机械压制法预置硬质合金WC/Co粉末的条形55Si2Mn弹簧钢上,用激光熔覆方法制备了化纤切断刀.调整熔覆层粉末配方中Al、TiC的加入量,结果表明加适量的Al粉能有效地抑制气孔,加TiC粉末能提高熔覆硬度.通过优化激光熔覆工艺参数,得到了无气孔缺陷、组织性能良好、硬度达到HV0.21250的激光熔覆层,达到了化纤切断刀的性能要求.  相似文献   

12.
采用同步送粉方式,在42CrMo轧辊基材上利用钛铁、钒铁和石墨等通过激光熔覆原位自生反应,制备了成型良好、致密无气孔、无裂纹、与基体呈冶金结合的TiVC2增强铁基熔覆层。利用X射线衍射、电子探针、显微硬度计、电化学工作站研究了熔覆层的显微组织及性能。结果表明,熔覆层中碳化物为TiVC2,TiVC2大小约0.5~2.0 m,呈多角块状均匀分布,碳化物对应两种不同的形核机制:以氧化铝异质形核和碳化物自发形核。随着熔覆合金粉末中TiC-VC数量的增加,熔覆层硬度并不呈简单的线性增加,熔覆层的耐蚀性逐渐变差。  相似文献   

13.
为了解决Cr12MoV钢溶蚀、表面碎裂等问题,利用Al-Ni、Nd-Ni粉末在Cr12MoV钢上进行激光熔覆实验,研究了Al、Nd对镍基覆层的宏微观形貌、组织及表面性能的影响。结果表明:Al可以减少熔覆层裂纹的产生,同时降低覆层硬度,使熔覆层中产生具有减磨作用的硬质相Al2O3等,降低覆层磨损量,14%Al覆层磨损量比2%Al的覆层磨损量低44.5%,Al较优质量分数为14%;Nd的晶粒细化作用明显,显著提升覆层显微硬度,2.5%Nd覆层平均硬度比基体平均硬度高36.8%,Nd较优质量分数为2.5%。  相似文献   

14.
镍基非晶复合涂层激光制备及其纳米压痕测试   总被引:1,自引:0,他引:1       下载免费PDF全文
采用大功率半导体激光熔覆和重熔的工艺在低碳钢表面制备Ni-Fe-B-Si-Nb合金非晶复合涂层,并对所得涂层进行了纳米压痕性能测试。研究结果表明,当激光熔覆时激光功率为0.8kW,熔覆速度为0.36m/min,送粉速度为12g/min,重熔时激光功率为3.5kW,熔覆速度为8m/min,在低碳钢表面成功制备了Ni40.8Fe27.2B18Si10Nb4非晶复合涂层,涂层主要由非晶相和NbC颗粒相组成。纳米压痕测试结果表明经激光重熔后所得非晶复合涂层的显微硬度和弹性模量远远大于未重熔的熔覆层,并且也大于同成分大块非晶。  相似文献   

15.
使用2 kw半导体激光在工具钢表面熔覆高速钢粉末。在同轴送粉的粉末汇聚点与激光的聚焦点可获得无裂纹的熔覆层。随着激光功率的增加,熔覆层厚度和粉末利用率增加,同时基体对熔覆层的稀释率下降。获得的熔覆层的硬度达到800 Hvo.3,基体硬度200 Hvo.:,表明  相似文献   

16.
TG156.99 2006032065激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究=Mi-crostructure and friction wear properties of TiC laser cladlayer[刊,中]/孙荣禄(天津工业大学机械电子学院.天津(300160)) ,杨贤金∥光学技术.—2006 ,32(2) .—287-289采用激光熔覆技术在TC4合金表面上制备了TiC陶瓷涂层,分析了熔覆层的微观组织,测试了熔覆层的硬度和摩擦磨损性能。结果表明,TiC激光熔覆层分为熔覆区和稀释区两个区域,熔覆区未受到基底的稀释,由TiC颗粒和TiC树枝晶组成;稀释区受到了基底的稀释,由TiC树枝晶和钛合金组成;TiC激光熔覆层的…  相似文献   

17.
40Cr钢表面激光熔覆层的磨损性能   总被引:4,自引:3,他引:1       下载免费PDF全文
 为研究模具钢熔覆层的磨损性能,采用铁基粉在40Cr钢表面进行激光熔覆,以激光熔覆层为上试样,GCr15钢珠为下试样,采用HT-500磨损试验机进行摩擦磨损试验,并与40Cr基体的磨损性能相对比。利用表面形貌仪测量磨痕深度和宽度。研究结果表明:载荷小于250 g时,相同载荷下基体的摩擦系数大。载荷小于300 g时,随磨损时间延长,熔覆层、基体的摩擦系数都随着载荷增加而减小。当载荷为300 g时,基体的摩擦系数在0.563~0.589之间变化,平均值为0.576,且随时间逐渐升高,耐磨性变差;熔覆层的磨擦系数在0.431~0.457之间变化,平均摩擦系数为0.444,磨痕深度和宽度分别是0.65 mm和1.096 μm,且随时间逐渐下降,表现了良好的耐磨性能。当载荷增加到500 g时,平均摩擦系数和磨痕深度比300 g时分别增加了75%和47倍,且摩擦系数逐渐升高,磨损性能下降。  相似文献   

18.
磁场辅助激光熔覆制备Ni60CuMoW复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
采用磁场辅助激光熔覆技术,在Q235钢表面制备了Ni60CuMoW复合涂层,借助SEM,EDS 和XRD 等表征手段对涂层进行了微观组织和物相分析,利用维氏硬度计测试了复合涂层截面的显微硬度分布,通过摩擦磨损实验和电化学测试系统研究了复合涂层的磨损性能和耐腐蚀性能。研究结果表明:涂层主要由-Ni,Cu)固溶体、硅化物和硼化物组成,Cr3Si晶粒细化且均匀致密;磁场辅助作用下,激光熔覆涂层平均显微硬度达到913HV0.5,为无磁场辅助涂层的1.5 倍,磨损失重仅为无磁场涂层的36%,自腐蚀电位上升了100 mV,腐蚀电流密度降低了70%,耐磨耐蚀性能得到了显著改善。  相似文献   

19.
胡卫强  刘宗德  王永田  夏兴祥 《物理学报》2011,60(2):27103-027103
通过水冷提高凝固速率及降低基体金属对熔覆层的稀释,采用改进的钨极惰性气体氩弧熔覆的方法,原位制备了大厚度(1—5 mm)Fe基非晶/纳米晶复合涂层.利用X射线衍射,光学显微镜和透射电子显微镜对涂层成分和组织进行分析,并测试了涂层的显微硬度.结果表明,采用快冷熔覆的方法可以制备出含有50%以上非晶含量的非晶/纳米晶复合涂层,涂层内纳米晶颗粒表面被非晶过渡层包覆.较厚涂层的显微硬度达到1600HV0.3,与基体为冶金连接,有良好的结合强度及耐磨性.非晶/纳米晶复合结构使得涂层与基体之间的过渡区具备较强的弹塑性,提高了涂层的抗冲击性. 最后重点讨论了微观结构和性能之间的内在联系,涂层内非晶相与纳米晶相的协同作用是造成涂层高硬度的主要原因. 关键词: 非晶 涂层 熔覆 显微硬度  相似文献   

20.
通过X射线衍射、扫描电子显微镜、能谱仪、极化曲线和磨粒磨损实验分析,研究了不同Cr加入量对TiC-VC增强铁基激光熔覆层耐蚀性和耐磨性能的影响。结果表明:熔覆层中物相主要为α-Fe,TiC,VC和TiVC2。随着Cr加入量的增加,伴随有残余奥氏体及Cr3C2的出现,且Cr3C2呈长条状部分聚集、部分单独分布。熔覆层的耐蚀性与耐磨性随Cr加入量的增加呈现先增加后降低的趋势。熔覆粉末中加入适量的Cr元素能显著提高熔覆层的硬度与耐蚀性。当添加质量分数为3.0%的Cr时,熔覆层硬度高达1090HV0.2,且相同磨损条件下熔覆层磨损失重仅约为Q235钢的1/26;当添加质量分数为9.0%的Cr时,所得熔覆层的耐蚀性最好,约为不添加Cr时的3.26倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号