首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N‐(n‐hexyl)‐2‐pyridylmethanimine (NHPMI) is described. The ethyl 2‐bromoisobutyrate (EBIB)‐initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in 2‐butanone than in p‐xylene at 90 °C. Initially added iron(III) halide improved the controllability of the reactions in terms of molecular weight control. The p‐toluenesulfonyl chloride (TsC1)‐initiated ATRP were uncontrolled with [MMA]0/[TsC1]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 in 2‐butanone at 90 °C. In contrast to the EBIB‐initiated system, the initially added iron(III) halide greatly decreased the controllability of the TsC1‐initiated ATRP. The ration of iron halide to NHPMI significantly influenced the controllability of both EBIB and TsC1‐initiated ATRP systems. The ATRP with [MMA]0/[initiator]0/[iron halide]0/[NHPMI]0 = 150/1//1/2 provided polymers with PDIs ≥ 1.57, whereas those with [iron halide]0/[NHPMI]0 = 1 resulted in polymers with PDIs as low as 1.35. Moreover, polymers with PDIs of approximately 1.25 were obtained after their precipitation from acidified methanol. The high functionality of the halide end group in the obtained polymer was confirmed by both 1H NMR and a chain‐extenstion reaction. Cyclic voltammetry was utilized to explain the differing catalytic behaviors of the in situ‐formed complexes by iron halide and NHPMI with different molar ratios. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4882–4894, 2004  相似文献   

2.
The catalytic amount of inorganic bases (i.e., NaOH, Na3PO4, NaHCO3, and Na2CO3) and organic bases such as pyridine and triethylamine was used as the additives in an iron‐mediated atom transfer radical polymerization with activators generated by electron transfer (AGET ATRP) of a polar monomer methyl methacrylate (MMA) using FeCl3·6H2O as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, ascorbic acid (AsAc) as the reducing agent, and tetrabutylammonium bromide (TBABr) as the ligand. All these bases can result in dual enhancement of polymerization rate and controllability over molecular weight while keeping low Mw/Mn values (<1.3) for the resultant polymers. For example, the polymerization rate of AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0/[AsAc]0/[NaOH]0 = 500/1/1/2/2/1.5 using NaOH as the additives was more than two times of that without NaOH. The nature of “living”/controlled free radical polymerization in the presence of base was confirmed by chain‐extension experiments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A detailed exploration of the atom transfer radical polymerization (ATRP) of a sugar‐carrying monomer, 6‐O‐methacryloyl‐1,2;3,4‐di‐O‐isopropylidene‐D‐galactopyranose (MAIPGal) was performed. The factors pertinent to ATRP, such as initiators, ligands, catalysts, and temperature were optimized to obtain good control over the polymerization. The kinetics were examined in detail when the polymerization was initiated by methyl 2‐bromoisopropionate (2‐MBP), ethyl 2‐bromoisobutyrate (2‐EBiB), or a macroinitiator, [α‐(2‐bromoisobutyrylate)‐ω‐methyl PEO] (PEO–Br), with bipyridine (bipy) as the ligand at 60 °C or by 2‐EiBB with N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as the ligand at room temperature (23 °C). The effects of the catalysts (CuBr and CuCl) were also investigated. We demonstrate that the successful ATRP of MAIPGal can be achieved for 2‐EBiB/CuBr/bipy and 2‐MBP/CuCl/bipy at 60 °C and for 2‐EBiB/CuBr/PMDETA at room temperature. The initiation by 2‐EBiB at room temperature with PMDETA as the ligand should be the most optimum operation for its moderate condition and suppression of many side reactions. Chain extension of P(MAIPGal) prepared by ATRP with methyl methacrylate (MMA) as the second monomer was carried out and a diblock copolymer, P(MAIPGal)‐b‐PMMA, was obtained. Functional polymers, poly(D‐galactose 6‐methacrylate) (PGMA), PEO‐b‐PGMA, and PGMA‐b‐PMMA were obtained after removal of the protecting groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 752–762, 2005  相似文献   

4.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

5.
Methyl methacrylate (MMA) were successfully polymerized by atom transfer radical polymerization with activator generated by electron transfer (AGET ATRP) using copper or iron wire as the reducing agent at 90°C. Well‐controlled polymerizations were demonstrated using an oxidatively stable iron(III) chloride hexahydrate (FeCl3·6H2O) as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, and tetrabutylammonium bromide (TBABr) or triphenylphosphine as the ligand. The polymerization rate was fast and affected by the amount of catalyst and type of reducing agents. For example, the polymerization rate of bulk AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0 = 500/1/0.5/1 using iron wire (the conversion reaches up to 82.2% after 80 min) as the reducing agent was faster than that using copper wire (the conversion reaches up to 86.1% after 3 h). At the same time, the experimental Mn values of the obtained poly(methyl methacrylate) were consistent with the corresponding theoretical ones, and the Mw/Mn values were narrow (~1.3), showing the typical features of “living”/controlled radical polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

7.
The copper‐mediated atom transfer radical polymerization of methyl methacrylate (MMA) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied to simultaneously control the molecular weight and tacticity. The polymerization using tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as a ligand was performed even at ?78°C with a number‐average molecular weight (Mn) of 13,400 and a polydispersity (weight‐average molecular weight/number‐average molecular weight) of 1.31, although the measured Mn's were much higher than the theoretical ones. The addition of copper(II) bromide (CuBr2) apparently affected the early stage of the polymerization; that is, the polymerization could proceed in a controlled manner under the condition of [MMA]0/[methyl α‐bromoisobutyrate]0/[CuBr]0/[CuBr2]0/[Me6TREN]0 = 200/1/1/0.2/1.2 at ?20°C with an MMA/HFIP ratio of 1/4 (v/v). For the field desorption mass spectrum of CuIBr/Me6TREN in HFIP, there were [Cu(Me6TREN)Br]+ and [Cu(Me6TREN)OCH(CF3)2]+, indicating that HFIP should coordinate to the CuI/Me6TREN complex. The syndiotacticity of the obtained poly(methyl methacrylate)s increased with the decreasing polymerization temperature; the racemo content was 84% for ?78°C, 77% for ?30°C, 75% for ?20°C, and 63% for 30°C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1436–1446, 2006  相似文献   

8.
9.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

10.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

11.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

12.
Summary: The first monomode microwave‐assisted atom transfer radical polymerization (ATRP) is reported. The ATRP of methyl methacrylate was successfully performed with microwave heating, which was well controlled and provided almost the same results as experiments with conventional heating, demonstrating the absence of any “microwave effect” in ATRP (in contrast to several literature reports). Furthermore, we found that the main advantage of the microwave‐assisted reactions over conventional reactions, i.e., a significant increase of reaction rates, only had its limited application in ATRP, even in very slow ATRP systems with high targeted molecular weights.

Comparison of the kinetic plots of the ATRP of MMA ([MMA]0/[EBIB]0/[CuCl]0/[NHPMI]0 = 200:1:1:3, MMA/DMF = 1:1 v/v) carried out at 90 °C in DMF with microwave (▴) and conventional heating (•), respectively.  相似文献   


13.
The living radical polymerization of styrene in bulk was successfully performed with a tetraethylthiuram disulfide/copper bromide/2,2′‐bipyridine (bpy) initiating system. The initiator Et2NCS2Br and the catalyst cuprous bromide (CuBr) were produced from the reactants in the system through in situ atom transfer radical polymerization (ATRP). A plot of natural logarithm of the ratio of original monomer concentration to monomer concentration at present, ln([M]0/[M]) versus time gave a straight line, indicating that the kinetics was first‐order. The number‐average molecular weight from gel permeation chromatography (GPC) of obtained polystyrenes did not agree well with the calculated number‐average molecular weight but did correspond to a 0.5 initiator efficiency. The polydispersity index (i.e., the weight‐average molecular weight divided by the number‐average molecular weight) of obtained polymers was as low as 1.30. The resulting polystyrene with α‐diethyldithiocarbamate and ω‐Br end groups could initiate methyl methacrylate polymerization in the presence of CuBr/bpy or cuprous chloride/bpy complex catalyst through a conventional ATRP process. The block polymer was characterized with GPC, 1H NMR, and differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4001–4008, 2001  相似文献   

14.
The atom transfer radical copolymerization of styrene with 2‐[(perfluorononenyl)oxy] ethyl methacrylate was performed in benzotrifluoride at 100 °C in the presence of 1‐bromoethyl benzene (1‐BrEB), cuprous bromide (CuBr), and α,α′‐bipyridine (bpy; [1‐BrEB]0/[CuBr]0/[bpy]0 = 1/1/3). The experimental results demonstrate that this polymerization proceeded in a living fashion, producing fluorinated random copolymers with narrow polydispersities, controlled molecular weights, and desired unit ratios. The compositions of the copolymers were calculated from 1H NMR spectra. The monomer reactivity ratios were obtained with the Skeist integral method. The copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and differential scanning calorimetry. The solid surface characteristics of the copolymers were evaluated with contact‐angle measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2670–2676, 2001  相似文献   

15.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

16.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

17.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The first example of well‐controlled atom transfer radical polymerization (ATRP) of a permanently charged anionic acrylamide monomer is reported. ATRP of sodium 2‐acrylamido‐2‐methylpropanesulfonate (NaAMPS) was achieved with ethyl 2‐chloropropionate (ECP) as an initiator and the CuCl/CuCl2/tris(2‐dimethylaminoethyl)amine (Me6TREN) catalytic system. The polymerizations were carried out in 50:50 (v/v) N,N‐dimethylformamide (DMF)/water mixtures at 20 °C. Linear first‐order kinetic plots up to a 92% conversion for a target degree of polymerization of 50 were obtained with [ECP]/[CuCl]/[CuCl2]/[Me6TREN] = 1:1:1:2 and [AMPS] = 1 M. The molecular weight increased linearly with the conversion in good agreement with the theoretical values, and the polydispersities decreased with increasing conversion, reaching a lower limit of 1.11. The living character of the polymerization was confirmed by chain‐extension experiments. Block copolymers with N,N‐dimethylacrylamide and N‐isopropylacrylamide were also prepared. The use of a DMF/water mixed solvent should make possible the synthesis of new amphiphilic ionic block copolymers without the use of protecting group chemistry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4446–4454, 2005  相似文献   

19.
With CuBr/tetramethylguanidino‐tris(2‐aminoethyl)amine (TMG3‐TREN) as the catalyst, the atom transfer radical polymerization (ATRP) of methyl methacrylate, n‐butyl acrylate, styrene, and acrylonitrile was conducted. The catalyst concentration of 0.5 equiv with respect to the initiator was enough to prepare well‐defined poly(methyl methacrylate) in bulk from methyl methacrylate monomer. For ATRP of n‐butyl acrylate, the catalyst behaved in a manner similar to that reported for CuBr/tris[2‐(dimethylamino)ethyl]amine. A minimum of 0.05 equiv of the catalyst with respect to the initiator was required to synthesize the homopolymer of the desired molecular weight and low polydispersity at the ambient temperature. In the case of styrene, ATRP with this catalyst occurred only when a 1:1 catalyst/initiator ratio was used in the presence of Cu(0) in ethylene carbonate. The polymerization of acrylonitrile with CuBr/TMG3‐TREN was conducted successfully with a catalyst concentration of 50% with respect to the initiator in ethylene carbonate. End‐group analysis for the determination of the high degree of functionality of the homopolymers synthesized by the new catalyst was determined by NMR spectroscopy. The isotactic parameter calculated for each system indicated that the homopolymers were predominantly syndiotactic, signifying that the tacticity remained the same, as already reported for ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5906–5922, 2005  相似文献   

20.
New graft copolymers of β‐pinene with methyl methacrylate (MMA) or butyl acrylate (BA) were synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). β‐Pinene polymers with predetermined molecular weights and narrow molecular weight distributions (MWDs) were prepared by living cationic polymerization with the 1‐phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, and the resultant polymers were brominated quantitatively by N‐bromosuccinamide in the presence of azobisisobutyronitrile, yielding poly(β‐pinene) macroinitiators with different bromine contents (Br/β‐pinene unit molar ratio = 1.0 and 0.5 for macroinitiators a and b , respectively). The macroinitiators, in conjunction with CuBr and 2,2′‐bipyridine, were used to initiate ATRP of BA or MMA. With macroinitiator a or b , the bulk polymerization of BA induced a linear first‐order kinetic plot and gave graft copolymers with controlled molecular weights and MWDs; this indicated the living nature of these polymerizations. The bulk polymerization of MMA initiated with macroinitiator a was completed instantaneously and induced insoluble gel products. However, the controlled polymerization of MMA was achieved with macroinitiator b in toluene and resulted in the desired graft copolymers with controlled molecular weights and MWDs. The structures of the obtained graft copolymers of β‐pinene with (methyl)methacrylate were confirmed by 1H NMR spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1237–1242, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号