首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李克文 《工业加热》2010,39(6):48-51
建立步进式加热炉内流动、燃烧和传热的数学模型.炉内流场的模拟采用κ-ε双方程模型,辐射换热计算采用P-1辐射模型,气相燃烧采用Species Transport模型,流场计算采用Simpler算法.采用上述模型与算法得到了炉内详细合理的温度、速度和浓度分布,并对其中影响板坯加热的温度场进行了试验验证.  相似文献   

2.
多孔介质燃烧室的传热性能主要取决于多孔介质材料的热物性,本文在气固两相局部非热平衡假设基础上,建立往复式流动下多孔介质超绝热燃烧的二维数学模型,研究了多孔介质的比热、导热系数、衰减系数和体积换热系数等对温度分布和燃烧速率的影响,以期为多孔介质选材和往复流动下多孔介质超绝热燃烧器的优化设计提供理论依据。  相似文献   

3.
A mathematical model for the prediction of the turbulent flow, diffusion combustion process, heat transfer including thermal radiation and pollutants formation inside combustion chambers is described. In order to validate the model the results are compared herein against experimental data available in the open literature. The model comprises differential transport equations governing the above‐mentioned phenomena, resulting from the mathematical and physical modelling, which are solved by the control volume formulation technique. The results yielded by the two different turbulent‐mixing physical models used for combustion, the simple chemical reacting system (SCRS) and the eddy break‐up (EBU), are analysed so that the need to make recourse to local turbulent scales to evaluate the reactants' mixing rate is assessed. Predictions are performed for a gaseous‐fuelled combustor fired with two different burners that induce different aerodynamic conditions inside the combustion chamber. One of the burners has a typical geometry of that used in gaseous fired boilers—fuel firing in the centre surrounded by concentric oxidant firing—while the other burner introduces the air into the combustor through two different swirling concentric streams. Generally, the results exhibit a good agreement with the experimental values. Also, NO predictions are performed by a prompt‐NO formation model used as a post‐processor together with a thermal‐NO formation model, the results being generally in good agreement with the experimental values. The predictions revealed that the mixture between the reactants occurred very close to the burner and almost instantaneously, that is, immediately after the fuel‐containing eddies came into contact with the oxidant‐containing eddies. As a result, away from the burner, the SCRS model, that assumes an infinitely fast mixing rate, appeared to be as accurate as the EBU model for the present predictions. Closer to the burner, the EBU model, that establishes the reactants mixing rate as a function of the local turbulent scales, yielded slightly slower rates of mixture, the fuel and oxidant concentrations which are slightly higher than those obtained with the SCRS model. As a consequence, the NO concentration predictions with the EBU combustion model are generally higher than those obtained with the SCRS model. This is due to the existence of higher concentrations of fuel and oxygen closer to the burner when predictions were performed taking into account the local turbulent scales in the mixing process of the reactants. The SCRS, being faster and as accurate as the EBU model in the predictions of combustion properties appears to be more appropriate. However, should NO be a variable that is predicted, then the EBU model becomes more appropriate. This is due to the better results of oxygen concentration yielded by that model, since it solves a transport equation for the oxidant concentration, which plays a dominant role in the prompt‐NO formation rate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The influences of thermophysical properties of porous media on superadiabatic combustion with reciprocating flow is numerically studied in order to improve the understanding of the complex heat transfer and optimum design of the combustor. The heat transfer performance of a porous media combustor strongly depends on the thermophysical properties of the porous material. In order to explore how the material properties influence reciprocating superadiabatic combustion of premixed gases in porous media (short for RSCP), a two‐dimensional mathematical model of a simplified RSCP combustor is developed based on the hypothesis of local thermal non‐equilibrium between the solid and the gas phases by solving separate energy equations for these two phases. The porous media is assumed to emit, absorb, and isotropically scatter radiation. The finite‐volume method is used for computing radiation heat transfer processes. The flow and temperature fields are calculated by solving the mass, moment, gas and solid energy, and species conservation equations with a finite difference/control volume approach. Since the mass fraction conservation equations are stiff, an operator splitting method is used to solve them. The results show that the volumetric convective heat transfer coefficient and extinction coefficient of the porous media obviously affect the temperature distributions of the combustion chamber and burning speed of the gases, but thermal conductivity does not have an obvious effect. It indicates that convective heat transfer and heat radiation are the dominating ways of heat transfer, while heat conduction is a little less important. The specific heat of the porous media also has a remarkable impact on temperature distribution of gases and heat release rate. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 336–350, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20120  相似文献   

5.
Targeted at improving the combustion stability and enhancing heat transfer in micro combustor, the combustion characteristics and thermal performance of micro combustor with pin fin arrays are numerically investigated by employing detail H2/O2 reaction mechanism. It is shown that the micro combustor with staggered pin fin arrays exhibits the highest average temperature and heat flux of external wall, while the micro combustor with in-line pin fin arrays displays the most uniform temperature distribution of external wall. When the equivalence ratio is 1.1, all micro combustors exhibit the highest mean temperature and heat flux of external wall. The micro combustor materials with high thermal conductivity can not only improve the average temperature and heat flux of external wall, but also enhance heat transfer to the upstream which can preheat the mixed gas. Therefore, the materials with high thermal conductivity, such as red copper and aluminum, can make up for the nonuniform temperature distribution of micro combustor with staggered pin fin arrays, so as to realize uniform high heat flux output of external wall.  相似文献   

6.
A numerical study of the swirl effect on a coaxial jet combustor flame including radiative heat transfer is presented. In this work, the standard k-ε model is applied to investigate the turbulence effect, and the eddy dissipation model (EDM) is used to model combustion. The radiative heat transfer and the properties of gases and soot are considered using a coupled of the finite-volume method (FVM), and the narrow-band based weighted-sum-of-gray gases (WSGG-SNB) model. The results of this work are validated by experiment data. The results clearly show that radiation must be taken into account to obtain good accuracy for turbulent diffusion flame in combustor chamber. Flame is very influenced by the radiation of gases, soot, and combustor wall. However, swirl is an important controlling variable on the combustion characteristics and pollutant formation.  相似文献   

7.
As it is important to achieve higher combustion efficiency for applications of micro-cylindrical combustor, the multi-factor impact mechanism on the combustion efficiency of a hydrogen-fuelled micro-cylindrical combustor is investigated in this work. Firstly, six factors such as hydrogen/air equivalence ratio, inlet velocity, inlet temperature, wall thermal conductivity, wall emissivity and convective heat transfer coefficient of outer wall and five levels of each factor are determined. Orthogonal design table L25(56) is introduced to arrange cases. Secondly, grey relational analysis is adopted to investigate the effects of the six factors on combustion efficiency. Finally, the results of grey relational analysis are validated by analysis of variance. Based on grey relational analysis and analysis of variance, it is determined that the impact ranking from the largest to the smallest is hydrogen/air equivalence ratio, inlet velocity and inlet temperature, followed by the other three factors. The impact of wall thermal conductivity, convective heat transfer coefficient of outer wall and wall emissivity is considered to be equal due to their difference of impact on combustion efficiency is very small. This work provides us significant reference for optimizing combustion efficiency of a hydrogen-fuelled micro-cylindrical combustor.  相似文献   

8.
The characteristics of heat transfer in confined multiple jet flows of a micro can combustor is investigated by means of large eddy simulation (LES). The micro combustor can be employed for a hybrid system, which consists of a micro gas turbine and a solid oxide fuel cell. In the present study, the focus is brought into heat transfer, which has a great effect on combustion stability as heat loss to the outside of combustor. The study is made for the three cases of different baffle plate configurations with changing the velocity ratio between fuel and oxidant jets. Downstream of the baffle plate, the flow recirculation regions appear and they can affect the enhancement of the turbulent heat transfer to the wall. In particular, the near-wall flow recirculation region formed between the oxidant jet and the combustor wall plays an important role for wall heat transfer. We study the turbulent thermal fields and conjugate heat transfer which show peculiar characteristics corresponding to the three different baffle plate shapes and different velocity ratios.  相似文献   

9.
Aimed at improving the energy output performance of the Microthermal Photovoltaic (MTPV) system, it is necessary to optimize the structure of the micro combustor. In this paper, micro combustor with in-line pin fins arrays (MCIPF) and micro combustor with both end-line pin fins arrays (MCEPF) were presented to realize the efficient combustion and heat transfer enhancement, and the influence of inlet velocity, equivalent ratio, and materials on thermal performance was investigated. The results showed that pin fins embedding is beneficial to improving combustion, and the combustion efficiency of MCIPF and MCEPF reaches 98.5% and 98.7%, which is significantly higher than that of the conventional cylindrical combustor (MCC). However, with the increase of inlet velocity from 8 m/s to 14 m/s, MCIPF exhibits the highest external wall temperature with a range of (1302–1386 K), while MCEPF maintains the best temperature uniformity. As the inlet velocity increases to 10 m/s, the external wall temperature and temperature uniformity reach the optimum. Besides, under the conditions of different equivalence ratios, both external wall temperature and heat flux increases first and then decreases, meanwhile the temperature uniformity of MCEPF is significantly improved compared with that of MCIPF, they all exhibit the highest external wall temperature with an equivalence ratio of 1.1, and the thermal performance is greatly enhanced. By comparing the heat transfer performance of combustors with different materials based on MCEPF, it is interesting to find that the application of high thermal conductivity materials can not only increase the external wall temperature, but also improve the temperature uniformity. Therefore, materials with high thermal conductivity such as Aluminum, Red Copper and Silicon Carbide should be selected for application in micro combustors and their components. The current work provides a new design method for the enhanced heat transfer of the micro combustor.  相似文献   

10.
Emissions from a conical FBC fired with a biomass fuel   总被引:1,自引:0,他引:1  
The results of experimental tests conducted on a conical fluidised bed combustor (FBC), firing mixed sawdust of some Thai woods, are discussed. The concentration profiles for major gaseous emissions (CO, NOx and CO2), as well as the temperature and O2 profiles along the combustor height, were obtained for various operating conditions (fuel feed rate and excess air) for three “fixed” bed heights (20, 30 and 40 cm). The influence of fuel quality (through varying the fuel's moisture content) on the formation of gaseous emissions was also studied. Both CO and NOx axial profiles were found to have an extreme (maximum) in the active combustion zone. The effects of FBC load and excess air, as well as fuel moisture, on the COmax were found to be very strong. The NOx,max was less affected by the combustion conditions, approaching 1.5–3 times the NOx values at the combustor outlet. The influence of the sand's bed height on the rate of gaseous emissions was found to be minor. The dependencies of the CO and NOx emissions (i.e. concentrations in the waste flue gas) on the FBC operating conditions are shown for different values of fuel's moisture content.  相似文献   

11.
介绍了以VC+ + 6.0为平台 ,结合Intra3D[1] 技术研究流化床锅炉燃烧温度场的三维动态可视化虚拟表示。在流化床锅炉燃烧温度场的动态全面仿真的基础上 ,运用计算机图形学的理论和方法 ,利用数字仿真的大量数据 ,借助于粒子运动系统的规律 ,建立流化床虚拟火焰 ,并实现动态显示和基本的人机交互。该技术的研究 ,可拓展热力系统性能研究的思路 ,弥补试验或中试研究中投资大、周期长的不足 ,开拓出新型的热力系统的虚拟再现研究手段。  相似文献   

12.
微热光电系统带环形翅片燃烧室的数值模拟   总被引:2,自引:1,他引:2  
最大化提高微燃烧室的燃烧效率对于微热光电系统是非常关键的。建立了微燃烧室内的流动、传热和燃烧模型并进行了数值模拟。利用试验结果验证了模型的可靠性。在此基础上,模拟了带有环形翅片燃烧室的情况,表明环形翅片能增强微燃烧室内混合气体的湍流扰动,改善燃烧状况,有效地提高燃烧效率。  相似文献   

13.
Microcombustors are microscale combustion devices that can be used to power microelectromechanical systems. Many combustor configurations are reported in the literature and, among them, combustion in a microscale recirculating heat exchanger is a feasible option. In this work, a simple, double-channel, recirculating heat exchanger is considered. The novelty of the present work lies in the heat transfer analysis approach to design a microcombustor. A combustor is designed using thermal resistance networks for a premixed fuel containing a methane–air mixture in stoichiometric ratio. The length of the combustor is designed based on the position of the combustion flame. Computational fluid dynamics is utilized to validate the theoretical results. The analysis is carried out for adiabatic and nonadiabatic conditions. The combustor lengths for adiabatic and nonadiabatic (ceramic) combustors vary from 39 to 242 mm and 49 to 276 mm, respectively, for variations in the mass flow rate of the premixed gases from 6 to 10 mg/s. A minimum limiting flow rate of 6 mg/s was identified. The average error in the maximum combustion gas temperatures between the theoretical and CFD results obtained in this work is 4.2%. The theoretical approach presented can be suitably applied to more complex geometries involving multichannels and variations in geometrical properties.  相似文献   

14.
某型涡扇发动机燃烧室三维数值模拟   总被引:1,自引:0,他引:1  
使用FLUENT对某涡扇发动机环形回流燃烧室进行了冷热态流场的三维数值模拟.比较了Standardk-ε、RNGk-ε、Realizablek-ε三种湍流模型,涡团耗散、平衡PDF两种燃烧模型及两种不同燃油雾化直径的数值模拟结果;比较了考虑火焰筒壁换热、大弯管冷却孔前后的数值模拟结果;分析了燃烧室性能.得出如下结论:R...  相似文献   

15.
艾军  蔡祖恢 《动力工程》2003,23(4):2543-2547
综合分析了工业炉燃料能源化学能转换、能量传递及烟气排放过程。提出了新的燃烧方式,研究了其对燃烧温度的影响。结果发现:新的燃烧方式能使燃料能源在工业炉上得以清洁及有效利用。图10表1参7  相似文献   

16.
Micro-combustor is an important component elements of the micro-thermophotovoltaic (MTPV) conversion device. The combustion stability is critical to improve its thermal performance, and thus three kinds of combustors are compared by computational fluid dynamics (CFD), which includes single – channel combustor, alternate permutation combustor and in-line combustor. The influences of micro-pin-fin arrays on the performance of the micro-combustor are discussed. Results indicate that the maximum surface temperature of combustor with fins is about 100 K higher than that without fins and the mean temperature and heat flux of in-line combustor are always higher in magnitude than those of the alternate permutation combustor. Analysis in this paper reveals that comparing with single-channel combustor, the micro-combustor with fins greatly enhances the heat transfer process through the wall. There are low velocity zones in the tail of fins, which can gather the reactants and prolong the residence time which make the combustion more sufficient and improve the effect of stable combustion. Meanwhile, under calculated conditions, the influence of micro-pin-fin arrays on the combustion reaction is stronger as the flow rate increase. The fin array in micro-combustor does not only improve the wall temperature but also minimize the wall temperature difference along the axial direction. Moreover, when the inlet velocity is larger than 4 m/s, the hydrogen conversion ratios of micro-combustors with fins was not strengthened obviously with the further increase of inlet velocity.  相似文献   

17.
Convective heat transfer within a cylindrical inert porous media combustor is studied. A two-dimensional, two temperature mathematical model, based on fluid mechanics, energy and chemical species governing equations is used for combustion simulation. The finite volume method is used to solve the discrete model for methane combustion with air. Results are presented for unsteady velocity and temperature distributions, as well as for the displacement of the combustion zone, to assess the effects of inlet reactants velocities in the range 0.3–0.6 m/s; excess air ratios between 3 and 6 and porosities of 0.3 up to 0.6 in the convection heat transfer and combustion processes.  相似文献   

18.
Understanding the flow dynamics, chemical kinetics, and heat transfer mechanism within a miniature thermophotovoltaic (TPV) combustor is essential for the development of devices for combustion-based power microelectromechanical systems, which may have a much higher energy density than that of conventional batteries. In this study, methods for enhancing the intensity and uniformity of the combustion chamber wall (emitter) illumination through the design of combustion and thermal management of the combustor in a miniature TPV system are proposed, discussed, and demonstrated. The proposed miniature TPV system consists of a swirling combustor with the combustion chamber wall acting as the emitter, a heat-regeneration reverse tube, and mixing-enhancing porous-medium fuel injection, which improves the low nonuniform illumination or incomplete combustion problems associated with conventional miniature TPV systems. Experiments and numerical simulations are performed to analyze the details of the flame structure and flame stabilization mechanism inside the meso-scale combustor with and without a reverse tube. Results indicate that the proposed swirling combustor with a heat-regeneration reverse tube and porous medium can improve the intensity and uniformity of the combustion chamber (emitter) illumination and can increase the surface temperature of the chamber wall. From the systematic numerical and experimental analysis, suitable operational parameters for the meso-scale TPV combustor are suggested, which may be used as a guideline for meso-scale TPV combustor design.  相似文献   

19.
Numerical investigation on the premixed H2/air combustion in a micro heat-recirculation combustor inserted with/without block is conducted. Effects of block setting, heat-recirculation, and flow rate on combustion characteristics and thermal performance are depicted and analyzed. The results demonstrate that the block enhances the flame stability and preheating effect, which also reduces the heat loss via exhaust gas, while it shortens reactants residence time. The combustor setting with a transverse block gains a better thermal performance than that inserted with a longitudinal block. With the increase of transverse block height, the high-temperature zone is broadened and radiation is improved. However, the block with a height of 10 mm separates the fluid field and weakens the effects of heat recirculation, leading to a lower outer wall temperature. Furthermore, the appropriate block insertion method and height contribute to the significant improvement of heat transfer, radiant efficiency and further optimization of micro power generator.  相似文献   

20.
燃气轮机环形燃烧室内燃烧流动的数值模拟   总被引:5,自引:0,他引:5  
对一个复杂的GE—F101型工业燃气轮机环形燃烧室,采用Reynolds应力湍流模型(RSM)、EBU—Arrhenius湍流燃烧模型和六通量热辐射模型描述其燃烧流动,应用FLUENT软件进行了三维化学反应流场的数值模拟研究。研究结果表明:旋流和燃料进口射流对燃烧室流内温度和流场分布有着重要的影响;利用数值手段得到燃烧室出口的温度分布以判断其能否满足透平叶片进口温度的要求是可行的;燃烧室工作压强对出口的NO分布有着重要影响。在燃用气体燃料时,燃气轮机的NO排放主要来自于热NO,瞬时NO只占很小一部分。图11参6  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号