首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了快速预测空冷单元内流动特性,利用经典差分法构造空冷单元离散格式,并求解初始时间内流场的数值解,组成瞬像集合,利用瞬像构造标准POD基,以此为基础建立高精度低维度的降阶外推模型,分析了在入口风速为3和5 m/s,计算时间步长为2时空冷单元内流场特性。结果表明:采用6个自由度降阶外推模型计算时间由362 s缩短为68 s,而最大误差分别为4×10~(-6)和2×10~(-5)m/s,符合计算精度要求,验证了降阶方法的可行性和有效性。  相似文献   

2.
为解决性态变化剧烈的大坝施工期或固结期实测资料建模的非平稳、小样本和多重共线性等问题,以某均质土坝坝顶上下游水平位移为研究对象,采用基于特征正交分解的逐步回归分析方法,对土坝坝顶下游侧实测值进行建模,分析了模型的可预报时间尺度和精度。结果表明,对于性态变化比较剧烈的土坝,基于特征正交分解回归方法,可有效解决非平稳、小样本和多重共线性问题,但该新建模型的预测精度在接近建模时间尺度的1/3范围内有效,后期实测资料与预报模型预测的差异反映大坝性态已发生了变化。  相似文献   

3.
A system-level thermal modeling methodology for shipboard power-electronics cabinets is presented and demonstrated for a PCM-1 cabinet, a complex air-to-water-cooled cabinet design of interest to naval applications. The cabinet is completely sealed and the heat dissipation in the power electronics bays is removed from the cabinet by re-circulating the hot air through an air-to-water-cooled packaged heat exchanger that is served by an external fresh water loop. A detailed unit-wise analytical model is developed for the packaged heat exchanger used in the cabinet. Under the prescribed design parameters, the PCM-1 cabinet operating-point air circulation rate was established to be 0.434 m3/s (920 CFM). A compact model is developed for the air convection within the cabinet using 3-D Computational Fluid Dynamics/Heat Transfer (CFD/HT) simulations in conjunction with Proper Orthogonal Decomposition (POD)-based reduced order modeling techniques. The compact model runs about 350 times faster with a mean prediction error within 3.6% for the velocity field, 0.04% for the temperature field, and 0.15% for the pressure field. The resulting overall cabinet model can be integrated into a system-level modeling platform to simulate the thermal response of multiple cabinets. The CFD/HT simulations of the PCM-1 cabinet architecture suggest that its two uppermost bays would experience high air temperatures due to insufficient local air flow.  相似文献   

4.
This article presents the results of a numerical study on mixed convection within a square lid-driven which was heated simultaneously by two finite heat sources on the bottom and side walls, and also filled with nanofluids. The results were presented for different nanofluids. The governing equations were solved using a finite volume approach by the SIMPLE algorithm. The effects of the Rayleigh number, Reynolds number, the solid volume fraction, the dimensions of heaters, and their locations on the streamlines and isotherms contours were investigated accurately. Also, the effects of the above parameters on the average Nusselt number along two heat sources were precisely presented. Moreover, variations of the average Nusselt number of two heaters were considered whenever one heater was fixed and the location of the other heater was varied along the wall. In addition, variations of the length of one heater on the average Nusselt number were also studied whenever the length of the other heater was fixed.  相似文献   

5.
To clarify the complex relation between the pump blade shape and its corresponding hydraulic performance, the knowledge mining method of centrifugal pump impeller based on proper orthogonal decomposition(POD) was proposed. The pump blade shape was parameterized by cubic Bezier curve. The Latin hypercube design method was employed to supply the necessary samples for producing the perturbations of blade wrap angle, and blade angle at inlet and outlet. The hydraulic efficiency and head were optimized by NSGA-II and RBF hybrid algorithm. The Pareto-optimal solutions were obtained. In order to further illustrate the relationship between the centrifugal pump blade shape and its hydraulic performance, the POD method was used to discover the effects of optimized blade shape to the flow solutions. For the optimization of centrifugal pump MH48-12.5, blade shape and relative velocity field in impeller from Pareto-optimal solutions were analyzed. The results demonstrate that larger blade angle and smaller wrap angle increase the average kinetic energy in impeller, resulting in higher pump head design. Smaller blade angle and larger wrap angle decrease the velocity gradient from the pressure side to suction side, resulting in smaller hydraulic loss and higher efficiency design.  相似文献   

6.
In this numerical study, steady laminar mixed-convection heat transfer in a two-dimensional square lid-driven cavity with a modified heated wall is investigated over a range of Richardson numbers, including 0.01, 1, and 10. The heated bottom wall of the cavity is characterized by rectangular, triangular, and sinusoidal wave shapes. The cooled top wall of the cavity is sliding with constant velocity, while the vertical walls are kept stationary and adiabatic. The governing equations are solved using a finite-volume technique. The results are presented in the form of streamlines, isotherms, and Nusselt number plots. The effects of the number of undulations and the amplitude on the flow field and heat transfer are also investigated. The predicted results demonstrate that the heat transfer enhancement is generally observed with the modification of the heated wall, while the improvement is found to be more profound for the case of rectangular wave and at low Richardson number.  相似文献   

7.
A computational procedure is presented with an accelerated full-multigrid scheme for an efficient modeling of time-dependent buoyancy-driven flows. The smoother is the iterative red-and-black successive overrelaxation (RBSOR) scheme. In order to improve the convergence, an acceleration parameter, Γ, is implemented in the classical full-multigrid procedure. It is shown that an optimal value of Γ = 3.75 minimizes the number of iterations needed for convergence. Numerical results are presented and compared with available investigations for an 8:1 differentially heated enclosure and a square heated cavity. Solutions for Prandtl number Pr = 0.71, Rayleigh number Ra = 3.4 × 105 for the 8:1 heated enclosure, and 105 ≤ Ra ≤ 109 for the square cavity are presented and show excellent agreement.  相似文献   

8.
Gaseous flow and heat transfer in a lid-driven cavity under nonequilibrium flow conditions is investigated using the direct simulation Monte Carlo method, from the slip to the free-molecular regime. The emphasis is on understanding thermal flow features. The impact of the lid velocity and various degrees of rarefaction on the shear stress and heat flux rates are analyzed. The role of expansion cooling and viscous dissipation on the heat transfer mechanism is investigated. Complex heat flow phenomena, such as counter-gradient heat transfer, are revealed by the simulations which the conventional Navier-Stokes-Fourier equations are not able to capture, even in the slip-flow regime.  相似文献   

9.
The Proper Orthogonal Decomposition method is applied to the instantaneous velocity field within the rotor-stator inter-row region of a high-speed high-pressure centrifugal compressor. The processed data come from experiments and numerical simulations. In comparison with a Fourier transform, the POD gives the best modal approximation for both initial fields, in terms of the energy expressed on any given number of modes to be taken into account: to reach 98% of the total energy of the velocity field, the required number of POD modes is around nine times smaller than the number of Fourier harmonics. The individual POD modes are given and show that the unsteady rotor-stator interaction is already present in the very first modes.  相似文献   

10.
稳燃腔正交射流燃烧器是在稳燃腔钝体燃烧器的基础上提出的一种新型煤粉燃烧器,它利用空气动力学原理产生高温烟气的回流,从而强化煤粉气流的着火与稳定燃烧。本文报道了采用该燃烧器进行冷,热态试验的结果,提出了燃烧器设计的原则,并详细探讨了其稳燃的机理。  相似文献   

11.
ABSTRACT

Numerical predictions of the inclination effects on the buoyancy-induced oscillatory flow in a lid-driven arc-shaped cavity are presented in this report. Governing equations in terms of the stream function–vorticity formulation expressing the laws of conservation in mass, momentum, and energy are solved by the finite-volume method in curvilinear coordinates. Computations have been performed for various combinations of physical parameters. The inclination angle of the cavity (θ) is varied from 0° to 15°, the Reynolds number (Re) is assigned to be 100, 200, and 500, and the Grashof number (Gr) ranges from 3 × 105 to 1 × 107, while the Prandtl number is fixed at 0.71 for air. In these above ranges of the parameters, two kinds of oscillatory flow pattern have been observed, namely, the traversing-periodic and the half-periodic patterns. Attention has been focused on the effects of the inclination effects on the occurrence of these two different oscillatory flow patterns. Meanwhile, periodic variation in the mixed-convection heat transfer accompanying the oscillatory flow field has also been studied, and the results for the local and the overall Nusselt numbers are presented.  相似文献   

12.
Numerical simulations are performed for the two-dimensional magneto-convective transport of Cu–H2O nanofluid in a vertical lid-driven square cavity in the presence of a heat-conducting and rotating circular cylinder. The left wall of the cavity is allowed to translate at a constant velocity in the vertically upward direction. Both left and right walls are maintained at isothermal but different temperatures. The top and bottom walls of the enclosure are thermally insulated. At the central region of the cavity is a heat-conducting circular cylinder which can rotate either clockwise or counterclockwise. A constant horizontal magnetic field of amplitude B0 is applied perpendicular to the vertical walls. The nanofluid is electrically conducting, while the solid walls are considered electrically insulated. Simulations are performed for various controlling parameters, such as Richardson number (0.01 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 50), dimensionless rotational speed of the cylinder (Ω = ±1), and nanoparticle concentration (0 ≤ ? ≤ 0.3), while Reynolds number based on lid velocity is fixed at a specific value (Re = 100). The flow and thermal fields are found to be susceptible to changes in the magnetic field and mixed convective strength, as well as nanoparticle concentration. However, the direction of cylinder rotation is observed to have little or no influence quantitatively on global hydrodynamic and thermal parameters.  相似文献   

13.
In this article, convection driven by combined thermal and solutal concentration buoyancy effects in a lid-driven square cavity is examined using velocity-vorticity form of Navier-Stokes equations. The governing equations consist of vorticity transport equation, velocity Poisson equations, energy equation, and concentration equation. Validation results are discussed for convection due to heat and mass transfer in a lid-driven square cavity at Re = 500, Le = 2, and GRT  = GRS  = 100. These results indicate that the present velocity-vorticity formulation could predict the characteristic parameters of flow, temperature, and solutal concentration fields using a much coarser mesh compared to the mesh used in a stream function-vorticity formulation. The capability of the proposed algorithm to handle complex geometry is demonstrated by application to mixed convection in a lid-driven square cavity with a square blockage. The effect of buoyancy ratio on the convection phenomenon is discussed for buoyancy ratio varying from ? 100 to 100 at Re = 100. Under opposing temperature and concentration gradients along the vertical direction, the negative buoyancy ratios give rise to aiding flows.  相似文献   

14.
Heat transfer behavior in a 2-D square lid-driven cavity has been studied for various pertinent Reynolds and Rayleigh numbers. The lattice Boltzmann method, a numerical tool based on the particle distribution function is applied to simulate a thermal fluid flow problem. Bhatnagar-Gross-Krook (BGK) is combined with the double population thermal Lattice Boltzmann model to solve mixed convection in a square cavity. An adaptive-network-based fuzzy inference system (ANFIS) method is trained and validated using BGK Lattice Boltzmann model results. The results show that the trained ANFIS model successfully predicts the temperature and flow fields in a few seconds with acceptable accuracy.  相似文献   

15.
In the present study, a numerical analysis is performed to understand the mixed convection flow, and heat and mass transfer with Soret effect in a two-sided lid-driven square cavity. The horizontal walls of the cavity are adiabatic and impermeable, while vertical walls are kept at constant but different temperatures and concentrations. The vertical walls move in a constant velocity. According to the direction of the movement of walls, three cases have been studied for different combinations of parameters involved in the study. The governing unsteady equations are solved numerically by the finite volume method with the SIMPLE algorithm. The results are presented graphically in the form of streamlines, isotherms, and velocity profiles. Heat and mass transfer rates are reduced if both walls are moving the in same direction, while heat and mass transfer rates are enhanced if the walls are moving in the opposite direction.  相似文献   

16.
The hydromagnetic mixed convection flow and heat transfer in a vertical lid-driven square enclosure is numerically simulated following a finite volume approach based on the SIMPLEC algorithm. Both the top and bottom horizontal walls of the enclosure are insulated, and the left and right vertical walls are kept isothermal with different temperatures. The left vertical wall is translating in its own plane at a uniform speed, while all other walls are stationary. Two cases of translational lid motion, viz. vertically upward and downward, are considered. A uniform magnetic field is applied along the horizontal direction normal to the translating wall. A heat conducting horizontal solid square cylinder is placed centrally within the outer enclosure. Simulations are conducted for various controlling parameters, such as the Richardson number (1 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 50), and Joule heating parameter (0 ≤ J ≤ 5), keeping the Reynolds number based on lid velocity fixed as Re = 100. The flow and thermal fields are analyzed through streamline and isotherm plots for various Ha, J, and Ri. Furthermore, the pertinent transport quantities such as the drag coefficient, Nusselt number, and bulk fluid temperature are also plotted to show the effects of Ha, J, and Ri on them.  相似文献   

17.
This work studies numerically the effect of the radiative heat transfer on the flow and thermal behaviors of the mixed convection in a lid-driven square cavity in the presence of radiatively emitting, absorbing, and isotropically scattering gray medium. The Boussinesq approximation has been used in modeling the governing equations, and the SIMPLE (semi-implicit method for pressure-linked equations) algorithm is used in coupling the velocity and pressure fields. The radiative transfer equation and the governing equations have been solved respectively by the discrete ordinates method and the finite-volume method in order to obtain the temperature, velocity, and heat flux distributions in the participating medium. The present numerical simulations are validated by comparison with several earlier studies. Then, the temperature and velocity distributions and Nusselt numbers have been analyzed in a broad range of optical thicknesses from 0 to 100 and Richardson numbers from 0.01 to 100. The results show that the radiation has a significant role on the flow and thermal behaviors in the lid-driven square cavity. As an example, we can refer to a sweep behavior that is detected in the velocity distributions of the lid-driven cavity.  相似文献   

18.
The problem of steady, laminar, and incompressible mixed convection flow in a horizontal lid-driven cavity is studied. In this investigation, two vertical walls of the cavity are perfectly insulated and the wavy bottom wall is considered at an identical temperature higher than the top lid. The enclosure is assumed to be filled with a Bousinessq fluid. The study includes computations for different physical parameters, such as cavity aspect ratio (AR) from 0.5 to 2, amplitude of undulating wall (A) from 0 to 0.075, and number of undulations (λ) from 0 to 3. The pressure-velocity form of Navier-Stokes and energy equations are used to represent the mass, momentum, and energy conservations of the fluid medium in the cavity. The governing equations and boundary conditions are converted to dimensionless form and solved numerically by the penalty finite element method with discretization by triangular mesh elements. Flow and heat transfer characteristics are presented in terms of streamlines, isotherms, average Nusselt number (Nu), and maximum temperature (θ max ) of the fluid. Results show that the wavy lid-driven cavity can be considered an effective heat transfer mechanism at larger wavy surface amplitude, as well as the number of waves and cavity aspect ratio.  相似文献   

19.
The hydromagnetic mixed convection flow and heat transfer in a top sided lid-driven square enclosure is numerically simulated in this paper following a finite volume approach based on the SIMPLEC algorithm. The enclosure is heated by corner heaters which are under isothermal boundary conditions with different lengths in bottom and right vertical walls. The lid is having lower temperature than heaters. The other boundaries of the enclosure are insulated. A uniform magnetic field is applied along the horizontal direction. A heat conducting horizontal solid object (a square cylinder) is placed centrally within the outer enclosure. Shear forces through lid motion, buoyancy forces due to differential heating and magnetic forces within the electrically conducting fluid inside the enclosure act simultaneously. Heat transfer due to forced flow, thermal buoyancy, Joule dissipation and conduction within the solid object are taken into account. Simulations are conducted for various controlling parameters such as the Richardson number (0.1 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 50) and Joule heating parameter (0 ≤ J ≤ 5) keeping the Reynolds number based on lid velocity fixed as Re = 100. The flow and thermal fields are analyzed through streamline and isotherm plots for various Ha, J and Ri. Furthermore, the pertinent transport quantities such as the drag coefficient, Nusselt number and bulk fluid temperature are also plotted to show the effects of Ha, J and Ri on them.  相似文献   

20.
A computational fluid dynamics simulation of heat transfer characteristics on the conjugate effect of Joule heating and magnetic field acting normal to the lid-driven cavity with a heated semi-circular source on one wall under constant temperature is investigated. The left wall of the cavity moves in an upward (case I) or downward (case II) direction, and buoyancy forces are also effective. Horizontal walls are adiabatic. The governing mass, momentum, and energy equations along with boundary conditions are expressed in a normalized primitive variables formulation. The finite element method is used in the solution of the normalized governing equations. The study is performed for pertinent parameters such as the Rayleigh number, Hartmann number, and Joule heating parameter. It is found that the average Nusselt number can be decreased with the increasing of the Rayleigh number in the presence of Joule effect. The magnetic field can be a good control parameter for heat transfer and fluid flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号