首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Single cell photometry and whole-cell patch clamp recording were used to study caffeine-induced intracellular Ca2+ signals and membrane currents, respectively, in endothelial cells freshly dissociated from rabbit aorta. 2. Caffeine (5 mM) evoked a transient increase in [Ca2+]i in fura-2-loaded endothelial cells. Pretreatment of cells with 10 microM ryanodine did not alter resting [Ca2+]i but irreversibly inhibited the caffeine-induced rise in [Ca2+]i. The caffeine-induced increase in [Ca2+]i was not attenuated by the removal of extracellular Ca2+ and did not stimulate the rate of Mn2+ quench of fura-2 fluorescence. 3. Bath application of caffeine evoked a dose- and voltage-dependent outward current. The rate of onset and amplitude of the caffeine-evoked outward current increased with higher caffeine concentrations and membrane depolarization. The relationship between caffeine-evoked current amplitude and membrane potential was non linear, suggesting that the channels underlying the current are voltage-sensitive. 4. In the absence of extracellular Ca2+, the amplitude of the caffeine-evoked outward current was reduced by approximately 50% but the duration of the current was prolonged compared to that observed in the presence of external Ca2+. Ca(2+)-free external solutions produced an unexpected increase in both the frequency and amplitude of spontaneous transient outward currents (STOCs). 5. Inclusion of heparin (10 micrograms ml-1) in the patch pipette abolished the acetylcholine (ACh)-induced outward current but failed to inhibit either STOCs or the caffeine-evoked outward current in native endothelial cells. In the absence of extracellular Ca2+, heparin did not affect either STOCs or the caffeine-induced outward current.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. The inhibitory action of caffeine on catecholamine secretion induced by secretagogues was investigated in perfused adrenal glands and dispersed chromaffin cells of the guinea-pig. 2. Caffeine (10 mM) caused a reversible inhibition of catecholamine secretion evoked by acetylcholine (ACh, 50 microM), KCl (56 mM, high K+) and veratridine (100 microM) and that induced by muscarinic receptor activation in the absence of extracellular Ca2+ in perfused adrenal glands. 3. In dispersed chromaffin cells, caffeine caused a dose-dependent inhibition of the secretory responses to 100 microM ACh and veratridine. Forskolin (30 microM), dibutyryl cyclic AMP (1 mM) and 8-bromo cyclic AMP (1 mM) did not mimic the action of caffeine. 4. In the voltage-clamp, whole-cell recording mode (at a holding potential of -60 mV or -70 mV), ACh (100 microM) evoked an inward current, and depolarizing pulses elicited inward Na+, Ca2+ and outward K+ currents. All these responses were partially inhibited by caffeine (20 mM). 5. ACh rapidly increased the intracellular concentration of Ca2+ ([Ca2+]i) in fura-2-loaded cells in either the presence or the absence of external Ca2+, though its magnitude was decreased by about 50% in Ca(2+)-free conditions. Caffeine (20 mM) inhibited these ACh-induced increases in [Ca2+]i. 6. In permeabilized chromaffin cells, caffeine (20 mM) caused an inhibition of catecholamine secretion evoked by Ca2+ (10 microM). 7. These results suggest that caffeine inhibits evoked catecholamine secretion through mechanisms such as the blockade of voltage-dependent Na+ and Ca2+ currents and ACh receptor current, and reduction of the release of intracellularly stored Ca2+ and/or Ca(2+)-sensitivity of the secretory apparatus.  相似文献   

3.
Interaction of ionized magnesium ([Mg2+]o) and caffeine in regulation of intracellular free calcium concentration ([Ca2+]i) in human aortic endothelial cells was studied using fura-2 and digital imaging microscopy. In 1.2 mM [Mg2+]o, basal [Ca2+]i was 73.7 +/- 22.4 nM, with a heterogeneous distribution within the cells. No significant changes of basal [Ca2+]i were found either when cells were treated with 10 mM caffeine or when [Mg2+]o was lowered from 1.2 mM to 0.3 mM. However, a combined superfusion of the cells with 0.3 mM [Mg2+]o and 10 mM caffeine resulted in a significant elevation of [Ca2+]i to 382.8 +/- 57.1 nM, probably by release of Ca2+ from internal stores, which was attenuated by NiCl2 (1 mM). These results suggest that a Ca(2+)-induced Ca2+ release mechanism is involved in regulation of [Ca2+]i in endothelial cells, which may be either regulated or modulated by Mg2+.  相似文献   

4.
Ca2+ release by caffeine and 9-methyl-7-bromoeudistomin D (MBED) and the concomitant activation of large conductance Ca2+-dependent K+ (BK) channels were analyzed using confocal Ca2+ imaging and whole cell voltage-clamp methods in guinea pig urinary bladder smooth muscle cells. Puff application of 3 or 10 mM caffeine for several seconds (2 - 5 s) elicited a large increase in intracellular Ca2+ concentration ([Ca2+]i) and induced a phasic outward current at a holding potential of -40 mV. The phasic outward current was the summation of spontaneous transient outward currents (STOCs) due to marked activation of BK channels and was followed by a short cessation of STOCs. Although the increase in superficial [Ca2+]i by caffeine was faster than that in global [Ca2+]i, the peak [Ca2+]i was identical in these areas. Puff application of 100 microM MBED also markedly enhanced STOCs for a few seconds. This response to MBED was not observed when stored Ca2+ was depleted by caffeine. The increase in [Ca2+]i by MBED occurred mainly in superficial areas. Longer application of 100 microM MBED for 2 min did not induce significant global [Ca2+]i increase but decreased the amount of Ca2+ release and cell shortening during the subsequent application of 10 mM caffeine. These results indicate that short application of MBED releases Ca2+ preferentially from superficial storage sites, presumably due to its slow approach to deeper sites. MBED may be a good pharmacological tool to manipulate selectively the superficial Ca2+ stores related to STOCs.  相似文献   

5.
1. The effects of depletion of intracellular Ca2+ stores on muscle tension and the intracellular Ca2+ concentration ([Ca2+])i were studied in fura-2 loaded longitudinal smooth muscle cells of the rat ileum. 2. After exposure to a Ca(2+)-free solution, application of Ca2+ caused a small contraction and a rise in [Ca2+]i, both of which were potentiated when the muscle was challenged with carbachol or caffeine before the addition of Ca2+. 3. Cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, dose-dependently decreased tension development and the rises in [Ca2+]i induced by carbachol and caffeine in the Ca(2+)-free solution, but conversely increased the Ca(2+)-induced responses even in the presence of the voltage-dependent Ca2+ channel blockers, methoxyverapamil and nifedipine. 4. The contraction and rise in [Ca2+]i evoked by Ca2+ gradually declined with time after removal of CPA, while the reverse was the case for the responses to carbachol and caffeine. 5. The Ca(2+)-induced contraction and rise in [Ca2+]i in the presence of CPA were inhibited by the replacement of Na+ with K+ or Cs+, and by the addition of Cd2+, Ba2+, Ni2+ or La3+. 6. The influx of Mn2+ was much greater in extent in the presence of CPA than in its absence. 7. These results suggest that the emptying of intracellular Ca2+ stores may activate Ca2+ influx not associated with voltage-dependent Ca2+ channels in the rat ileal smooth muscle.  相似文献   

6.
In mesenteric artery smooth muscle cells, depolarizing voltage steps activated outward K+ currents whose amplitude was decreased by about 20% with phenylephrine (1-10 microM: n = 14 cells). Attenuation of outward current was only partly dependent on [Ca2+]i, because it persisted, although reduced, with 10 mM BAPTA in the patch pipette and was abolished in the presence of 3 mM 3,4-diaminopyridine (n = 13). In outside-out patches, phenylephrine did not exert any direct effect on the unitary current amplitude or open probability of large conductance K+ channels. Outward current was significantly increased (>100% in both cases) by 10 mM caffeine, presumably owing to the release of internal Ca2+ stores. With 10 mM BAPTA in the pipette, the only response to caffeine was a small decrease (9 +/- 3.7%, n = 10) in the K+ current. These observations show that a minor effect of phenylephrine is to reduce outward K+ current (probably Kv) in mesenteric cells.  相似文献   

7.
1. The effects of 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (beta-TPA) on the inositol 1,4,5-trisphosphate (IP3) production, Ca2+ release from the intracellular Ca2+ stores and sensitization of contractile apparatus, induced by prostaglandin F2 alpha (PGF2 alpha) and U46619, a thromboxane A2-mimetic, were studied, using fura-2-loaded and -unloaded rat thoracic aortic strips. 2. Both eicosanoids had characteristic patterns of responses in Ca(2+)-free, 2 mM EGTA-containing solution (Ca(2+)-free solution). They induced transient increases in intracellular Ca2+ concentration ([Ca2+]i) without corresponding transient contraction, but produced delayed, sustained contraction, where [Ca2+]i was returned to the basal level. 3. Treatment with beta-TPA for 60 min reduced the eicosanoids-induced IP3 production, suggesting that the treatment inhibits PIP2 breakdown. 4. The treatment also attenuated [Ca2+]i transient induced by the eicosanoids, but not by caffeine (an IP3-independent releaser of stored Ca2+), in fura-2-loaded preparations incubated in Ca(2+)-free solution. 5. In contrast in the presence of beta-TPA, the sustained contractions evoked by the eicosanoids in Ca(2+)-free solution were potentiated, suggesting that the sites of actions of beta-TPA and the eicosanoids may differ from each other. 6. PGF2 alpha and U46619 utilize different and parallel signal transduction pathways to release Ca2+ by IP3 produced by PIP2 breakdown (beta-TPA-sensitive), and to increase the sensitivity of contractile apparatus, in which protein kinase C may not be involved (beta-TPA-insensitive).  相似文献   

8.
1. Effects of (-)-cromakalim (lemakalim) on tension and Ca2+ mobilization induced by noradrenaline (NA) were investigated by measuring intracellular Ca2+ concentration ([Ca2+]i) isometric tension and production of inositol-1,4,5-trisphosphate (IP3) in smooth muscle strips of the rabbit mesenteric artery. 2. In thin smooth muscle strips, 10 microM NA produced a large phasic, followed by a small tonic increase in [Ca2+]i, which correlated well with the evoked phasic and tonic contractions, respectively. Lemakalim (0.1-10 microM) lowered the resting [Ca2+]i without a decrease in the resting tension, and also inhibited the increased [Ca2+]i and tension induced by 10 microM NA, all in a concentration-dependent manner. Glibenclamide (1 microM) inhibited these actions of lemakalim. 3. In Ca(2+)-free solution containing 2 mM EGTA, NA (10 microM) transiently increased [Ca2+]i, tension and synthesis of IP3. Lemakalim (over 0.01 microM) inhibited these actions of NA in Ca(2+)-free solution containing 5.9 mM K+, but not in Ca(2+)-free solution containing 128 mM K+. These actions of lemakalim were prevented by glibenclamide (1 microM). Lemakalim (1 microM) did not modify the increases in [Ca2+]i and tension induced by 10 mM caffeine. 4. In beta-escin-skinned strips, 10 microM NA increased [Ca2+]i in Ca(2+)-free solution containing 50 microM EGTA, 3 microM guanosine triphosphate (GTP) and 2 microM Fura 2 after the storage sites were loaded by application of 0.3 microM Ca2+ for 2 min, suggesting that Ca2+ is released from intracellular storage sites following activation of the alpha-adrenoceptor. Lemakalim (1 microM) did not inhibit the Ca2+ release from storage sites induced by NA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Halothane, an anesthetic with marked depressant effects on the circulation, was studied for its ability to inhibit inositol phosphate and Ca2+ signaling evoked by the vasoactive hormone arginine vasopressin (AVP) and Ca2+ responses elicited by platelet-derived growth factor and by thapsigargin in cultured A7r5 vascular smooth muscle cells. Changes in apparent [Ca2+]i were measured using the indicator indo-1 and flow cytometry, whereas inositol phosphate levels were determined using myo-[3H]inositol and column chromatography. Preincubation with clinically relevant concentrations of halothane resulted in dose-dependent depression of [Ca2+]i responses evoked on stimulation with AVP. Halothane (2.0%) inhibited the increases in [Ca2+]i by 34-45%. In cells incubated in Ca(2+)-free medium plus 0.5 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, the halothane effect was more marked, with 1.5% halothane inhibiting the responses by approximately 53-61%. However, when Ca2+ influx was stimulated by addition of 5 mM Ca2+ in the continued presence of the agonist, the [Ca2+]i response was inhibited by only 15%, suggesting that release of Ca2+ rather than Ca2+ influx is more sensitive to inhibition by the anesthetic. The effects of halothane on Ca2+ homeostasis are not explained solely by anesthetic-induced depletion of Ca2+ from intracellular stores, because the anesthetic inhibited increases in [Ca2+]i elicited by thapsigargin in cells suspended in Ca(2+)-free medium by only 31%. Halothane inhibited inositol phosphate formation elicited by AVP, suggesting an additional means by which the anesthetic may alter agonist-induced Ca2+ responses. The current results also demonstrate that halothane actions are not specific solely to responses evoked by AVP, which acts via a guanine nucleotide-binding protein-linked signaling pathway, but include responses stimulated by platelet-derived growth factor, an agonist that elevates [Ca2+]i via receptor-latent tyrosine kinase activity. The current results demonstrate that, in vascular smooth muscle cells, halothane alters Ca2+ homeostasis, an action that may underlie the in vivo vasodilator effects of the anesthetic.  相似文献   

10.
1. Rat pancreatic acinar cells were loaded with Fura 2 AM or Magfura AM and levels of cytosolic Ca2+ ([Ca2+]i) and Mg2+ ([Mg2+]i) were observed. 2. Addition of acetylcholine (ACh) evoked a transient rise in [Ca2+]i. The component of the rise dependent on extracellular Ca2+ sources, but not intracellular sources, was seen to be enhanced when both ACh and 5 mM Ca2+ were present in the medium. In the presence of elevated extracellular Mg2+ (10 mM) and ACh both components of the Ca2+ transient were inhibited. 3. Both GTP gamma S and fluoroaluminate, which can directly stimulate G-proteins, evoked a transient rise in [Ca2+]i in acinar cells. These responses were inhibited in the presence of elevated Mg2+. 4. Resting [Mg2+]i was seen to be 1.36 mM +/- 0.08 (n = 29) for cells in normal medium, 1.8 mM +/- 0.08 (n = 6) in elevated Mg2+ medium and 0.93 mM +/- 0.02 (n = 5) in cells bathed and Mg(2+)-free medium. Addition of ACh led to reductions in [Mg2+]i in cells bathed in normal medium and Mg(2+)-free medium but not elevated Mg2+ medium. 5. It is concluded that levels of extracellular Mg2+ strongly influence [Mg2+]i and [Ca2+]i mobilization during ACh-evoked responses. Mg2+ does not appear to be exerting its effects by influencing receptor-agonist interactions or by competing with Ca2+ at extracellular sites of Ca2+ uptake.  相似文献   

11.
1. We studied the effects of caffeine on coronary artery smooth muscle of the pig by measuring changes in isometric tension, cytosolic free Ca(2+) concentration ( [Ca2+]i) and transmembrane potential. 2. In the absence of tone, caffeine induced a concentration-dependent transient contraction of coronary artery strips, followed by sustained relaxation. Simultaneously with the relaxation, caffeine, 25 mM, hyperpolarized the smooth muscle cells by 7.7 +/- 0.9 mV. 3. Caffeine caused a concentration-dependent relaxation of strips precontracted with 10(-5)M acetylcholine (ACH). A supramaximal relaxing concentration of 25 mM caffeine produced an additional transient increase in [Ca2+]i on the Ca2+ plateau of ACh tonic contraction, which was followed by a decrease in [Ca2+]i to a level slightly below the basal concentration. This relaxation was accompanied by a hyperpolarization of 7.3 +/- 0.9 mV. 4. KCI 120 mM (high K+) contracted the strips with a concomitant depolarization of 38.6 +/- 1.6 mV and sustained increase in [Ca2+]i. Caffeine caused a concentration-dependent relaxation of high K+-induced contraction. Caffeine, 25 mM, decreased the Ca2+ plateau to a level that remained above the basal concentration of Ca2+ but did not change the membrane potential. 5. When strips were placed in a Ca(2+)-free medium with EGTA 2mM, and, in addition, ACh was applied successively three times, both intracellular and extracellular mobilizable Ca2+ pools were depleted. In these conditions, phorbol 12,13 dibutyrate (PDBu) 10(-7) M and prostaglandin F 2 alpha (PGF 2 alpha) 10(-5) M contracted the strips. Caffeine (25 mM) inhibited these contractions with no change in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effects of direct or indirect (nerve-mediated) muscle stimulation, acetylcholine (ACh), caffeine and procaine on the membrane and mechanical properties of smooth muscle cells of the cat trachea were investigated by means of double sucrose-gap and isometric tension recording methods. Outward current pulses (2 s in duration) applied to the muscle tissue in the presence of tetrodotoxin (10(-7)M), atropine (10(-6)M) and propranolol (10(-6)M) evoked no action potential (spike); however, when the depolarization exceeded 9 mV, a contraction was evoked. The spike and contraction evoked by outward current pulses in the presence of tetraethylammonium (TEA, 10 mM) were suppressed by treatment of the tissue with either Ca2+-free EGTA (2 mM) containing solution or Mn2+ (5 mM). In the presence of procaine (10 mM), outward current pulses evoked an action potential but no contraction. Field stimulation of short duration (50 microseconds) applied to the whole tissue produced an excitation of the intrinsic nerves and evoked excitatory junction potentials (e.j.ps), and when the amplitude of e.j.ps exceeded 4 mV, a twitch contraction occurred. E.j.p. was more effective in producing a contraction than was the membrane depolarization evoked by outward current pulses. Amplitudes of contractions evoked by exogenous ACh (10(-5)M) were much larger than those evoked by 128 mM-[K]0 or caffeine (10 mM), in normal Krebs solution. When the amplitudes of the contractions produced by 128 mM [K]0 were defined as a relative amplitude of 1.0, the mean amplitudes of contraction produced by ACh (10(-5)M) or caffeine were 2.5 +/- 0.20 or 1.2 +/- 0.26, respectively. In Ca2+-free EGTA (2 mM)-containing solution, the contraction induced by 128 mM-[K]0 was rapidly abolished, whereas the contractions evoked by caffeine (10 mM) or the initial phasic contraction produced by ACh (10(-5)M) were largely unaffected. When the amount of Ca2+ stored in the muscle cell was estimated from the amplitude of caffeine-induced contraction evoked in Ca2+-free solution, procaine (10 mM) applied simultaneously with Ca2+, after depletion of Ca2+ from the cells by means of caffeine, increased the amount of Ca2+ stored to 1.31 +/- 0.14 (n = 6) times the control value. However, ACh (10(-7)M) or excess concentrations of [K]0 applied with Ca2+ did not increase the amount of Ca2+ stored in the caffeine-sensitive intracellular compartment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
1. A whole-cell voltage clamp technique was used to examine the effects of purinoceptor and muscarinic receptor agonists on voltage-sensitive Ca2+ channels in guinea-pig isolated urinary bladder cells. 2. When the cell membrane was clamped at the holding potential, rapid application of ATP elicited a large inward current in normal solution containing 2.5 mM Ca2+, and reduced the subsequent Ca2+ channel current evoked by a depolarizing pulse (0 mV). Carbachol (CCh) elicited little membrane current, but similarly reduced the Ca2+ current. 3. When purinoceptor agonists were rapidly applied during conditioning depolarizations at +80 mV, an outward current was elicited, and the Ca2+ channel current evoked by the subsequent test potential of 0 mV was not affected. Application of CCh at +80 mV also elicited an outward current, but it reduced the subsequently evoked Ca2+ current. 4. The inhibitory effect of muscarinic agonists on the Ca2+ channel current was attenuated by caffeine (10 mM). 5. In Ca(2+)-free, low-Mg2+ solution, a Na+ current flowing through voltage-dependent Ca2+ channels was evoked by depolarization. This current was not reduced by bath application of purinoceptor agonists (ATP and alpha,beta-methylene ATP). 6. These results suggest that the main effect of purinoceptor stimulation is opening of non-selective cation channels, and that muscarinic stimulation triggers Ca2+ release from intracellular stores. Voltage-sensitive Ca2+ channels are inactivated through an increase in intracellular Ca2+ induced by either activation of purinoceptor or muscarinic receptors.  相似文献   

14.
1. The effect of sarafotoxin S6b (sarafotoxin), a vasoconstrictor peptide, on cytosolic Ca2+ concentration ([Ca2+]i) and force in rat aortic strips loaded with fura-2 was determined by front-surface fluorometry. The objective was to elucidate the role of extracellular and intracellular Ca2+ in the mechanism of action of this peptide. 2. In the presence of extracellular 1.25 mM Ca2+, sarafotoxin induced a biphasic response consisting of an initial rapid increase in [Ca2+]i followed by a secondary sustained increase. Tension developed slowly but was sustained during the application of sarafotoxin. Diltiazem (10 nM-0.1 mM) partially inhibited both the increases in [Ca2+]i and tension. 3. In the presence of extracellular Ca2+, the force developed in relation to the increase in [Ca2+]i ([Ca2+]i-force relationship) observed with sarafotoxin was much greater than that observed upon K+ depolarization. In the presence of diltiazem the sarafotoxin-induced [Ca2+]i-force relationship was shifted even further to the left. 4. In the absence of extracellular Ca2+, sarafotoxin induced a transient increase in [Ca2+]i and a sustained contraction. Extending the incubation time in Ca(2+)-free physiological solution, resulted in smaller responses. However, after 60 min in Ca(2+)-free solution, sarafotoxin induced a sustained contraction but no change in [Ca2+]i. This residual contraction was inhibited by H-7, which is known to inhibit protein kinase C. 5. After treatment with caffeine to reduce intracellular stored Ca2+, sarafotoxin could still elicit increases in [Ca2+]i and in tension, showing that the caffeine-sensitive intracellular Ca2+ store partially overlaps with the sarafotoxin-sensitive store.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The action of Ca2+ channel modulators has been examined on the intracellular Ca2+ signal in the longitudinal smooth muscle cells of the guinea-pig intestine after exposure to histamine and to agents known to affect intracellular Ca2+ stores. Isometric contraction has been measured simultaneously with front-surface fluorometry of fura 2-loaded preparations. 2. Histamine (10 microM) evoked a phasic and tonic increase in [Ca2+]i and contraction which were both sensitive to the Ca2+ channel blockers, nimodipine and D600. 3. Caffeine (10 mM) evoked in rapid increase in [Ca2+]i which was sustained as long as the preparation was exposed to the drug, whereas the contractile response was only phasic. In the presence of nimodipine 1 microM, the phasic contraction was absent although the fura 2-Ca2+ signal amounted to 32% of the control. 4. Ryanodine (10 microM) evoked a slow increase in [Ca2+]i and a contraction, both of which were reversed after exposure to nimodipine (1 microM) or D600 (10 microM). In the presence of diazoxide (500 microM), a hyperpolarizing agent, the ryanodine-evoked increase in [Ca2+]i and in muscle tone were inhibited. 5. Thapsigargin (1 microM) also produced an increase in [Ca2+]i and a contraction both of which were blocked by nimodipine (1 microM). 6. In Ca2+-free solution, histamine 10 microM evoked non-reproducible phasic Ca2+ signal and contraction. This response was recovered after refilling in Ca2+ containing solution. The recovery was blocked by nimodipine, D600 or diazoxide and was facilitated by the Ca2+ channel activator, Bay K 8644. When the refilling medium was supplemented with thapsigargin, the recovered response was significantly reduced, but Bay K 8644 still had some action. 7. The present results show that blockage of L-type Ca2+ channels inhibited changes in [Ca2+]i evoked by histamine, caffeine and ryanodine which are generally attributed to Ca2+ mobilization from intracellular stores. They also show that when the tissue was exposed to nimodipine, D600 and diazoxide during the procedure of refilling after depletion of intracellular stores, the action of histamine on [Ca2+]i and contraction was blocked. Bay K 8644 had an opposite effect even when the Ca2+ pumping activity of the sarcoplasmic reticulum was reduced by thapsigargin. This indicates that refilling of intracellular Ca2+ stores depleted by histamine in guinea-pig intestine mainly occurred through L-type Ca2+ channels.  相似文献   

16.
1. Concentration-response relationships for carbachol (CCh)-induced increases in the cytosolic calcium concentration ([Ca2+]i) and membrane currents were studied by use of fura-2 microfluorimetry and nystatin-perforated whole-cell recording in single smooth muscle cells isolated from rat intestine. 2. CCh produced an initial peak rise in [Ca2+]i followed by a small sustained rise. In individual cells, the peak rise in [Ca2+]i did not increase in amplitude even with increasing concentrations of CCh, though the threshold concentration varied in different cells. The initial peak rise in [Ca2+]i, but not the sustained rise, was due to the release of stored Ca2+, because it was unchanged after removal of external Ca2+ and the addition of nifedipine (1 microM) or La3+ (1 mM). 3. CCh elicited an outward and inward current in a cell dialyzed with a pipette solution containing KCl at a holding potential of -30 mV and with one containing NaCl at -60 mV, respectively. In individual cells, the amplitude of each current was similar in cells stimulated at over the threshold concentration of CCh, but the threshold was different among cells. 4. The percentage of cells showing Ca(2+)-transient responses to CCh at given concentrations was similar to those showing current responses and contractile responses. 5. In thin muscle bundles, a concentration-dependent contraction was evoked by CCh in the absence of external Ca2+. Its threshold was similar to those of Ca(2+)-transient and current responses in single cells. 6. These results suggest that CCh-induced release of stored Ca2+ takes place in an all-or-nothing fashion in individual cells of the rat intestinal smooth muscle.  相似文献   

17.
(1R,9S)-beta-Hydrastine (BHS), at 100 microM, has been shown to mainly reduce the K+-induced dopamine release and Ca2+ influx by blocking the L-type Ca2+ channel and inhibit the caffeine activated store-operated Ca2+ channels, but not those activated by thapsigargin, in PC12 cells. In this study, the effects of BHS on Ca2+ transport from Ca2+ stores in the absence of external Ca2+ were investigated in PC12 cells. BHS decreased the basal intracellular Ca2+ concentration ([Ca2+]i) in the absence of external Ca2+ in PC12 cells. In the absence of external Ca2+, pretreating PC12 cells with 100 microM BHS reduced the rapid increase in the [Ca2+]i elicited by 20 mM caffeine, but not that by 1 microM thapsigargin. In addition, BHS inhibited the increase in the [Ca2+]i elicited by restoration of 2 mM CaCl2 after the Ca2+ stores had been depleted by 20 mM caffeine, but not those depleted by 1 microM thapsigargin, in the absence of external Ca2+. These results suggested that BHS mainly inhibited Ca2+ leakage from the Ca2+ stores and the caffeine-stimulated release of Ca2+ from the caffeine-sensitive Ca2+ stores in PC12 cells.  相似文献   

18.
Intracellular Ca2+ stores were studied in sympathetic neurons grown in primary culture from the superior cervical ganglion of the rat. The [Ca2+]i was measured in single cells using the fluorescent Ca2+ indicator fura-2 and a sensitive microfluorimeter. Superfusion of the cells with 10 mM caffeine elicited a rapid and transient increase in [Ca2+]i in the absence of extracellular Ca2+, indicating the presence of a caffeine-sensitive intracellular Ca2+ storage site. After depletion of the store by mobilization of Ca2+ with caffeine, it could be refilled by elevating [Ca2+]i, allowing multiple caffeine-induced [Ca2+]i transients to be elicited from a single neuron. Ryanodine (1 microM), an alkaloid that promotes Ca2+ release from the sarcoplasmic reticulum, was an effective inhibitor of the caffeine-induced [Ca2+]i transients in sympathetic neurons. Exposure to ryanodine in the presence of caffeine was required to produce a subsequent inhibition of the caffeine-induced response, suggesting a "use-dependent" inhibition that may result from depletion of the Ca2+ stores. In contrast, dantrolene Na (10 microM), an agent known to interfere with Ca2+ release from the sarcoplasmic reticulum, also blocked the caffeine-induced [Ca2+]i transients, but in a time-dependent rather than a use-dependent manner. Electrophysiological measurements using the whole cell version of the patch-clamp technique were made simultaneously with [Ca2+]i microfluorimetric recordings. The magnitude of the [Ca2+]i transients elicited by step depolarizations closely paralleled the magnitude of Ca2+ influx via voltage-sensitive Ca2+ channels, regardless of whether the magnitude of the Ca2+ current was modified by varying the test pulse duration or potential. The relationship between the magnitude of Ca2+ influx and the resulting increase in [Ca2+]i saturated at large Ca2+ influxes resulting from long depolarizations, consistent with the activation of a large capacity, low affinity [Ca2+]i buffering mechanism. Caffeine (10 mM) and ryanodine (10 microM), applied singly or together, produced a small and variable decrease in the [Ca2+]i transient resulting from cell depolarization using the whole-cell patch-clamp technique. We conclude that mammalian sympathetic neurons possess intracellular Ca2+ stores with pharmacological characteristics that closely resemble those found in muscle but that these are relatively small and produce little amplification of [Ca2+]i transients resulting from Ca2+ influx through voltage-sensitive Ca2+ channels.  相似文献   

19.
Rae MG  Irving AJ 《Neuropharmacology》2004,46(8):1057-1069
Using combined whole-cell voltage-clamp recording and Ca2+ imaging we have investigated further the characteristics and pharmacology of group I metabotropic l-glutamate receptor (mGluR)-mediated responses in CA1 pyramidal neurons of the rat hippocampus. The selective group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG), evoked a transient increase in intracellular Ca2+ levels ([Ca2+]i), within neuronal somas and apical dendrites, together with a relatively long lasting inward current (I(DHPG)). Both types of response were enhanced by depolarisation (-30 mV), and this condition was used for their characterisation. The DHPG-induced [Ca2+]i rise was much more sensitive to manipulations of Ca2+ homeostasis, such as using the Ca2+ store depleting agent, cyclopiazonic acid (50-100 microM), the fast Ca2+ buffer, BAPTA (intracellular; 20-40 mM) and Ca(2+)-free/EGTA (1 mM) bath solution, than I(DHPG), suggesting that these responses are, in the main part, mediated by distinct processes. The selective mGluR1 and mGluR5 antagonists, (S)-(+)-alpha-amino-a-methylbenzeneacetic acid (LY367385; 100 microM) and 2-methyl-6-(phenylethynyl)-pyridine (MPEP;10 microM), respectively, markedly inhibited both I(DHPG) and the DHPG-evoked increase in [Ca2+]i. Moreover, these antagonists inhibited the Ca2+ response by more than 50% suggesting a synergistic interaction between mGluR1 and mGluR5. This study demonstrates that in CA1 pyramidal neurons group I mGluR-mediated inward currents and Ca2+ release from intracellular stores are enhanced under depolarising conditions and that mGluR1 and mGluR5 both contribute to these phenomena.  相似文献   

20.
1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号