首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
以改质煤沥青为原料,采用KOH活化法制备活性炭。探讨了碱炭比、炭化时间、活化温度、活化时间等对活性炭吸附性能的影响。结果表明,制备改质煤沥青基活性炭的最佳条件为:碱炭比为4,炭化时间为45 min,活化温度840℃,活化时间140 min,在此条件下,制得改质煤沥青基活性炭的碘吸附值为1 152.8 mg/g。  相似文献   

2.
氢氧化钠活化法制备木炭基活性炭   总被引:1,自引:0,他引:1  
以木质炭化料为原料,NaOH为活化剂,制备活性炭。讨论了活化温度、碱炭比、保温时间对活性炭得率和吸附性能的影响。结果表明,随着活化温度、碱炭比和保温时间的增加活性炭的活化程度增加,活性炭的得率不断下降;随着活化温度、碱炭比和保温时间的延长,活性炭的吸附性能先上升后下降。在较佳工艺条件下,活化温度850℃,碱炭比为1. 0∶1. 0,保温时间1. 0 h下活性炭的碘吸附值和亚甲基蓝吸附值分别为814. 7 mg/g和127. 5 mg/g。  相似文献   

3.
以废弃的辣椒秸秆为原料,KOH为活化剂,制备高比表面积活性炭,研究了碱炭比、活化温度、炭化温度及活化时间对活性炭吸附性能的影响。结果表明,活性炭制备的最佳工艺条件为:碱炭比为3∶1,活化温度为700℃,炭化温度为450℃,活化时间为40 min。在此条件下,制得的活性炭碘吸附值2 356.40 mg/g,亚甲基蓝吸附值41.3 mL/0.1 g,BET比表面积为2 432.135 m2/g,Langmuir比表面积高达3 270.478 m2/g,吸附总孔容为2.064 cm3/g,平均孔径为3.246 nm。SEM和XRD观察发现,辣椒秆活性炭呈不定形态,具有丰富和发达的蜂窝状孔隙结构。  相似文献   

4.
以酚醛树指为原料,氢氧化钾为活化剂,制备酚醛树脂基超高比表面积活性炭。采用正交实验考查了制备工艺中炭化温度,碱炭比,活化温度和活化时间对活性炭吸附性能的影响,确定了超高比表面积活性炭的制备最佳工艺。利用TG—DTA对热解过程中树脂的炭化活化行为进行了探讨;通过N2-BET对活性炭比表面积和孔结构进行了表征,并简单分析了成孔机理。结果表明:炭化温度400℃,碱炭比为5:1,活化温度为750℃,活化时间为100min时,制备的酚醛树脂基活性炭比表面积为3013m^2·g^-1,孔容1.609ml/g,平均孔径2.135nm,亚甲基蓝吸附值为592mg·g^-1。  相似文献   

5.
以咖啡壳为原料、KOH为化学活化剂制备高性能活性炭,在单因素试验探索活化时间、活化温度和碱炭比对活性炭碘吸附值影响的基础上,运用响应面法进行活化工艺参数优化。通过对模型优化确定最佳工艺参数为活化时间5 min、活化温度950℃和碱炭比(KOH和咖啡壳炭化料质量比,下同)4∶1;该条件下制备的活性炭的碘吸附值为2 214 mg/g(实验值),和预测值(2 209.5 mg/g)基本相符,验证了模型的有效性。  相似文献   

6.
正交实验用于煤沥青基活性炭的工艺优化   总被引:2,自引:0,他引:2  
介绍了正交实验法用于煤沥青基活性炭的研制,在固定碱炭比的条件下,分析了炭化温度(A)、炭化时间(B)、活化温度(C)及活化时间(D)四因素对活性炭比表面积的影响。通过直观分析和方差分析可知,四因素中对BET比表面积影响次序为:B>D>A>C,从而找出制备煤沥青基活性炭的最优工艺条件A3B1C1D2,并且在炭化温度为450℃、炭化时间为30min、活化温度为800℃和活化时间为100min的条件下制备出比表面积为1846m2/g的活性炭。  相似文献   

7.
以核桃壳为原料,选用KOH高温干法活化工艺制备出了核桃壳基活性炭。研究了炭化温度、碱料比、活化时间、活化温度、酸洗工艺对核桃壳基活性炭碘吸附值的影响,并用正交试验确定了核桃壳基活性炭的最佳制备工艺。结果表明,在炭化温度为400℃,碱料比为3∶1,活化温度为600℃,活化时间为50min时制备的核桃壳基活性炭的碘吸附值最好,其碘吸附值为1393mg·g~(-1)。  相似文献   

8.
高硫高灰煤脱灰脱硫预处理后采用KOH活化法制备活性炭.考察了碱炭比、活化温度、活化时间以及灰分、硫分含量和表面活性剂等对制备的活性炭吸附铜离子的影响.结果表明,在活化温度为820℃,活化时间为1.5h,碱炭比为2.5的条件下制得活性炭比表面积为1 004.5m2/g,铜离子去除率为67.8%;煤中灰分的脱除和添加表面活性剂有利于提高活性炭的吸附性能,但脱硫煤基活性炭吸附性能降低.  相似文献   

9.
为寻求黑龙江煤制备高比表面活性炭的适宜原料配比及工艺条件,以七台河煤与依兰煤配煤制备活性炭,用正交实验法,考察原料煤配比、碱炭比、活化温度、活化时间等因素对活性炭碘吸附值的影响,获得了最适宜工艺条件:七台河煤与依兰煤配比1/1,碱炭比6/1,活化温度850℃,炭活化时间120min。在此条件下所得活性炭的碘吸附值可达1973mg·g^-1,比表面达1735m^2·g^-1。对于拓宽黑龙江煤炭应用领域具有一定的现实意义。  相似文献   

10.
李玉甫 《辽宁化工》2010,39(9):916-917,920
以煤为原料,KOH为活化剂制备活性炭。建立了静态吸附装置,并通过该装置研究了90#汽油在不同活性炭样品上的吸附性能。在制备过程中,考察了碱炭比、活化温度、活化时间对活性炭吸脱附性能的影响。研究发现,常温常压下活性炭对汽油饱和蒸气的吸附性能受多个参数的影响,其中BET比表面积影响最大,另外较大的孔、较宽的孔径分布,有利于脱附。同时得到最优的制备条件,碱炭比为5:1、活化温度800℃、活化时间1h。  相似文献   

11.
以城市污水厂二沉池污泥为主要原料、固体ZnCl2为活化剂,添加一定量锯末,在高温管式炉中采用化学活化法制备污泥活性炭,通过单因素实验考察了锯末添加率、盐料比、活化温度、活化时间对污泥活性炭吸附性能的影响. 结果表明,锯末添加量为20%、盐料质量比为2.0、活化温度为550℃、活化时间为15 min时,所得活性炭碘吸附性能最优,达679.25 mg/g;污泥活性炭具有发达的孔结构,其比表面积达609.68 m2/g,总孔容为0.51 cm3/g,平均孔径为3.51 nm.  相似文献   

12.
桑枝基活性炭的制备及其对多环芳烃菲的吸附   总被引:1,自引:0,他引:1  
王姗  巴淑萍  刘强  唐玉斌 《净水技术》2013,(6):64-68,78
以废弃桑枝为原料,以磷酸氢二铵为活化剂制备活性炭,考察了浸渍比、炭化温度、炭化时间、活化温度和活化时间对活性炭的亚甲基蓝吸附值的影响,确定了制备桑枝基活性炭的最佳工艺条件。研究了桑枝基活性炭对水中多环芳烃菲的吸附性能。结果表明制备活性炭的最佳工艺条件:浸渍比为2:1、炭化温度为400℃、炭化时间为90min、活化温度为800℃、活化时间为120min。制备的活性炭对多环芳烃菲具有较好的吸附效果,初始浓度为1000μg/L的菲在桑枝活性炭上吸附去除率可达71.7%,吸附平衡时间为240min。Freundlich吸附模型可较好地模拟菲在桑枝基活性炭上的吸附等温线。菲的吸附以物理吸附为主,吸附较易进行。  相似文献   

13.
沈朴  汪晓芹  薛博 《煤炭转化》2012,35(2):89-94
以多种陕北机制兰炭为原料,采用KOH活化法,在氮气氛的管式炉中进行高温活化,制备出了BET比表面为810.017 2m2/g,BJH平均孔径为6.579 3 nm的活性炭.考察了活化温度、时间、碱炭比、碱炭混合方式和兰炭种类等对活性炭吸附性能的影响,确定活性炭的最佳制备工艺为:以兴茂兰炭为原料,KOH干粉法活化,活化条件为800℃下1h,碱炭比为5∶1.  相似文献   

14.
以椰壳炭化料为原料,KOH为活化剂,在不同工艺条件下制备了超级电容器用活性炭电极材料。考察了碱炭比、活化温度和活化时间对活性炭孔隙结构及其用作电极材料的比电容的影响。结果表明,在KOH与椰壳炭化料质量比为4:1,活化温度800℃,活化时间60 min的条件下,可制得比表面积2891 m2/g,总孔容积1.488 cm3/g,中孔率73.6%,比电容达235 F/g的优质活性炭电极材料。  相似文献   

15.
以七台河煤与依兰煤进行配煤实验研究,在七台河煤与依兰煤配比1/1,碱炭比6/1,活化温度850℃,炭活化时间120min条件下对活性炭制备炭活化动力学进行研究。结果表明:以KOH为活化剂,配煤活化反应速率在800~950℃范围内,对烧失率B为一级反应,由阿仑尼乌斯公式可求出反应活化能为101.4032kJ·mol^-1,指前因子为3.1382×10^4。  相似文献   

16.
以粘胶基活性炭纤维与酚醛树脂分别作为吸附剂和粘接剂制备成型活性炭,通过脱硫实验,考察了炭化温度、活化温度、活化时间和原料配比因素对成型活性炭脱硫能力的影响。结果表明,于700℃下炭化60min,然后以CO2为活化剂,850℃下活化60min,制备出了较高吸附性能的成型活性炭产品。  相似文献   

17.
以水稻秸秆为原料、氢氧化钠为活化剂制备活性炭。结果表明水稻秸杆活性炭的最佳工艺条件:碱碳比为2∶1,活化时间为60 min,活化温度为600℃,碳化温度为350℃,在此工艺条件下制备的水稻秸秆活性炭的亚甲基蓝吸附值和碘吸附值分别为29.2 mL/0.1 g和1 706.98 mg/g,制备出的活性炭吸附剂质量指标接近水质净化用活性炭标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号