首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高煤层CH4抽采效率,利用自主研发的实验系统,模拟超临界CO2在深部煤层中驱替CH4的过程,开展了不同温度和注入压力条件下原煤试样中超临界CO2渗流、吸附及驱替CH4实验。结果表明:在恒定温度条件下,随着超临界CO2注入压力逐渐增大,煤体渗透率提高,CO2吸附量增加。超临界CO2注入压力和温度对驱替效果影响显著。不同温度条件下,当超临界CO2注入压力从8 MPa增至12 MPa,CH4驱替量平均增长了0.076 cm3/g,CH4驱替效率增加了17%~23%,超临界CO2置换体积比呈线性递减趋势;相同注入压力条件下,温度每升高10℃,驱替效率平均增加8%,置换体积比平均下降0.5。研究结果为高效抽采煤层CH4和实现CO2封存提供理论依据。  相似文献   

2.
3.
4.
Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate. In this study, low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples. Results show that the signal intensity of T2 distribution isn’t affected by sediment type and pore pressure, but is affected by temperature. The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T2 distribution. The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media. The water conversion rate fluctuates during the hydrate formation. The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media. For the fine sand sample, the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate, but causes a large water-sand contact area resulting in a low water conversion ratio (Cw=96.2%). The clay can reduce the water conversion rate and ratio, especially montmorillonite (Cw=95.8%). The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water.©2022 China Geology Editorial Office.  相似文献   

5.
Hydrated Portland cement was reacted with CO2 in supercritical, gaseous and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from a deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images showed that the cement alteration was significantly more extensive with CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50 °C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD and SEM–EDS analyses identified the formation of an extensive carbonated zone filled with CaCO3(s), as well as a porous degradation front and an outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. Cement alteration by CO2-saturated groundwater for 2–8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. An extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1–3 months. The chemical–physical characterization of hydrated Portland cement after exposure to various phases of CO2 indicates that the extent of cement carbonation can be significantly heterogeneous depending on the CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous and aqueous phases of CO2 during geologic C sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reactions. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for three decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement–steel or cement–rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.  相似文献   

6.
7.
8.
This paper deals with the dissolution of magnesia in aqueous carbon dioxide, in the absence and presence of ultrasound. The particle size, reaction temperature and solid / liquid ratio were chosen parameters. The reaction was homogeneous first-order reaction model according to kinetic data and the activation energy was found to be 17.5 kJ/mol in both cases. The effect of ultrasound is on the pre-exponential factor A in the Arrhenius equation. An empirical relation was also given, which relates the rate constant to ultrasound power.  相似文献   

9.
10.
In 65 samples, we got values (unusually replicable and consistent for this type of work) of concentration, 14C/13C (AMS) age, and δ13C for: peat, dissolved organic carbon (DOC), peat fractions, and dissolved CO2 and CH4 at 50-cm intervals down to 700 cm in Ellergower Moss, a rainwater-dependent raised (domed) bog in southwest Scotland. (1) We attribute the consistency of the results to Ellergower Moss being unusually homogeneous, with unusually low hydraulic conductivity, and containing only a few gas spaces; and to the sampling methods including 18-month equilibration of in situ samplers. (2) The dissolved gas concentration depth profiles are convex and very similar to each other, though CO2 is 5-10 times more concentrated than CH4, while the profile of DOC is concave. (3) The age profile of peat is near linearly proportional to depth; that for DOC is about 500-1000 yr younger than the peat at the same depth; the dissolved gases are 500-4300 years younger than the peat. The age of the operational peat fractions humic acid and humin is similar to that of whole peat. (4) The δ13C profile for deep peat is almost constant; δ13C-CO2 is more enriched than the peat (δ13C-CO2 35‰ more); δ13C-CH4 is the same amount more depleted. Nearer the surface both dissolved gases become steadily more depleted, δ13C is about 20‰ less at the surface. (5) A simulation shows that mass flow can account for the concentration and age profiles of DOC, but for the gases diffusion and an additional source near the surface are needed as well, and diffusion accounts for over 99% of the dissolved gas movements. (6) The same processes must operate in other peatlands but the results for Ellergower should not be extrapolated uncritically to them.  相似文献   

11.
Recent pore-scale observations and geomechanical investigations suggest the lack of true cohesion in methane hydrate-bearing sediments (MHBSs) and propose that their mechanical behavior is governed by kinematic constrictions at pore-scale. This paper presents a constitutive model for MHBS, which does not rely on physical bonding between hydrate crystals and sediment grains but on the densification effect that pore invasion with hydrate has on the sediment mechanical properties. The Hydrate-CASM extends the critical state model Clay and Sand Model (CASM) by implementing the subloading surface model and introducing the densification mechanism. The model suggests that the decrease of the sediment available void volume during hydrate formation stiffens its structure and has a similar mechanical effect as the increase of sediment density. In particular, the model attributes stress-strain changes observed in MHBS to the variations in sediment available void volume with hydrate saturation and its consequent effect on isotropic yield stress and swelling line slope. The model performance is examined against published experimental data from drained triaxial tests performed at different confining stress and with distinct hydrate saturation and morphology. Overall, the simulations capture the influence of hydrate saturation in both the magnitude and trend of the stiffness, shear strength, and volumetric response of synthetic MHBS. The results are validated against those obtained from previous mechanical models for MHBS that examine the same experimental data. The Hydrate-CASM performs similarly to previous models, but its formulation only requires one hydrate-related empirical parameter to express changes in the sediment elastic stiffness with hydrate saturation.  相似文献   

12.

地层骨架孔隙中水合物的高质量形成是开展水合物实验研究的前提和物质基础,可为我国深水油气及水合物资源开发提供理论指导。依据南海GMGS2-07井水合物层地质条件,利用TOUGH+HYDRATE数值模拟软件和自主研制的水合物反应生成装置开展数值模拟和实验研究,在验证数值模拟方法准确性和可靠性的基础上,通过控制变量法分别开展不同地层导热系数和含水饱和度条件下水合物生成质量的影响研究。结果表明:(1) 数值模拟与室内实验过程中,水合物形成时温度、压力与三相物质变化趋势一致且特征值十分接近,验证了数值模拟方法的准确性和可靠性。(2) 导热系数越大,水合物生成越快,最终形成的水合物饱和度越大,分布也更加均匀。但导热系数与最终形成水合物的饱和度的正负相关性,存在临界边界。本次所选用的反应釜尺寸,临界边界距上、右边界距离为1.8 cm,临界边界内导热系数与水合物饱和度呈正相关性,临界边界外呈负相关性。临界边界随着反应釜尺寸的增大而增大,但临界边界位置不受地层渗透率的影响。(3) 随地层含水饱和度增加,最终形成的水合物饱和度先增大后减小,峰值处含水饱和度小于初始压力条件下的理论气水比。当初始压力为7.8 MPa,含水饱和度约22.23%时,所形成的水合物饱和度最大且分布最不均匀。由此可知,选用高导热系数材料制备地层骨架、使初始含水饱和度低于气水理论比以及调整初始温压条件使之偏向相平衡曲线左方有利于形成分布均匀的高饱和水合物。研究认为深水油气含水合物固井和水合物资源钻采提供依据,为水合物商业化开采提供技术储备。

  相似文献   

13.
Carbon dioxide is known as a hazardous material with acidic property that can be found as impurity in natural gas reservoirs with a broad range of 2 up to 40 %. Therefore, many efforts have been directed to remove and separate carbon dioxide from methane to prevent corrosion problems as well as improving the natural gas energy content. In this study, two molecular sieves, silicoaluminophosphate-34 (SAPO-34) zeotype and T-type zeolite, were synthesized by the hydrothermal method for the comparative study of adsorptive separation of carbon dioxide from methane. The synthesized adsorbents were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Brunner–Emmett–Teller techniques. These characterization tests confirmed formation of both materials with acceptable crystallinity. Both adsorbents were tested in equilibrium adsorption experiments in order to evaluate maximum capacity and adsorption affinity. Adsorption capacity of carbon dioxide and methane on SAPO-34 and zeolite T were measured in a pressure range of 0.1–2.0 MPa and temperature of 288, 298, and 308 K and fitted with the Sips and Langmuir isotherm models. The ideal selectivity of CO2/CH4 was determined for SAPO-34 and zeolite T at the studied pressures and temperatures, indicating that the molecular sieves can be properly used for CO2–CH4 separation or CO2 capturing from natural gas.  相似文献   

14.
田锋  郑海飞  孙樯 《岩石学报》2015,31(11):3477-3483
应用金刚石压腔(diamond-anvil cell)实验技术,对草酸的稳定性进行了研究。草酸在高压低温条件下可以稳定存在,而在低压高温条件下将分解为CO2、H2O等气体。当成矿流体遇到破裂带或裂隙而发生减压沸腾时,可以使成矿流体中的有机络合物迅速发生分解产生大量CO2,从而造成金属元素在有利的空间沉淀、富集成矿。同时,实验研究了高温高压条件下CO2的物理化学性质,得到了CO2包裹体压力计的测定方程:P(MPa)=271.517·(Δν1381.93-0.010987·ΔT)+0.1,式中Δν1381.93(cm-1)为待测包裹体中CO2的拉曼位移相对于常温常压下CO2的拉曼位移1381.93cm-1之差,ΔT(℃)为待测包裹体的温度与常温(23℃)之差,P(MPa)为待测包裹体的内压。由上式计算拉曼位移ν的标准偏差为±0.2cm-1,压力P的误差为±54MPa。该压力标定方程适用于在高压下温度范围为23℃≤T≤390℃的压力标定。  相似文献   

15.
基于"以废治废"的理念,通过湿式碳酸化法对磷石膏固定CO2的反应温度、时间、液固比和氮硫比对固碳率的影响进行了研究。采用XRD和SEM-EDS对磷石膏原料和碳酸化产物的物相组成、显微形貌等进行了分析与表征。结果表明: 磷石膏中的石膏在碳酸化过程中全部转化为方解石,而硬石膏由于溶解度小仅有部分转化为方解石,石英对于碳酸化反应是惰性的。优化的碳酸化工艺条件为: 反应温度为65℃,碳酸化时间为60 min,液固比为3.0,氮硫比为2.25,固碳率达到95.24%。实验结果对固碳减排和磷石膏的进一步资源化利用具有一定的实际意义。  相似文献   

16.
Relationship between methane gas hydrates and mud volcanoes in the Black Sea is considered. It is suggested that they are mainly confined to compensation troughs near mud volcanoes.  相似文献   

17.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

18.
The effect of coal moisture content and composition upon methane/carbon dioxide mixed gas adsorption characteristics is investigated. Separation factors are used to quantify the relative adsorption of carbon dioxide and methane. Experimental data indicate that carbon dioxide separation factors vary slightly between coal lithotypes, but the effects of variable coal composition and moisture upon selective adsorption are difficult to isolate. Model predictions based upon single-component isotherms show that although some variability in carbon dioxide selectivity exists for different coal types, there is no clear relationship between coal composition and carbon dioxide selectivity. Model predictions also indicate that coal moisture decreases carbon dioxide selectivity. The ideal adsorbed solution (IAS) theory and the extended Langmuir model differ substantially in their ability to predict binary gas adsorption behaviour. Comparison of model predictions to experimental data demonstrates that IAS theory, in conjunction with the Dubinin–Astakhov single-component isotherm equations are more accurate for the prediction of mixed gas desorption isotherms collected in this study than the extended Langmuir. IAS predictions, however, are strongly dependent upon the choice of pure gas isotherm equation.  相似文献   

19.
Modelling of the thermal regime of permafrost soils has made it possible to estimate the stability of methane hydrates in the continental permafrost in the Northern Eurasian and North American regions with the risk of gas emissions into the atmosphere as a result of possible dissociation of gas hydrates in the Holocene Optimum and under contemporary climatic conditions [1, 2].  相似文献   

20.
Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidars has been undertaken at ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. A differential absorption lidar instrument will be presented in this paper: BILLI (BrIdge voLcanic LIdar). It is based on injection-seeded Nd:YAG laser, double-grating dye laser, difference frequency mixing and optical parametric amplifier. BILLI is funded by the ERC (European Research Council) project BRIDGE (BRIDging the gap between Gas Emissions and geophysical observations at active volcanos). It scanned the gas emitted by Pozzuoli Solfatara (Naples, Italy) and Stromboli Volcano (Sicily, Italy) during field campaigns carried out from October 13 to 17, 2014, and from June 24 to 29, 2015, respectively. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater areas. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar. This result represents the first direct measurement of this kind ever performed on active volcanos and shows the high potential of laser remote sensing in early detection of volcanic hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号