首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous poly(methacrylic-co-glycidylmethacrylate) (MAA-GM) was prepared by dispersion polymerization using benzoyl peroxide as an initiator and methacrylate terminated phthalate glycol polyester as a steric stabilizer in polar organic medium (chloroform–ethanol mixture). The prepared poly(methacrylic acid) dispersion was crosslinked by glycidylmethacrylate oligomers. The crosslinked copolymer (MAA-GM) was base hydrolyzed using hydroxyl amine, sodium methoxide, and triethyl amine. The metal binding behavior of the prepared polymer was examined by means of atomic absorption spectrophotometer. The thermal stability of the prepared polymers was examined by thermal gravimetric analysis (TGA). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1793–1798, 1999  相似文献   

2.
3.
The formation of scratch‐resistant coating film prepared from colloidal silica and a polysiloxane matrix was investigated. Methyltrimethoxysilane (MTMS) was hydrolysed and mixed with silica sol (SiO2) at various compositions to form the hybrid hard‐coating nanocomposite film. The hydrolysed MTMS (polysiloxane) acts as the polymeric binder that is covalently linked to the colloidal silica surface and provides adhesion for the scratch resistant coating film to the substrate. The ratio between the polymeric matrix and the SiO2 nanoparticles was found to play a major role in controlling the coating film appearance and its resistance to scratching. At a SiO2 content < 30 wt.%, the agglomeration of the hydrolysed polysiloxane was observed and caused the opacity of the coating film. At a SiO2 content >70 wt.%, there was not enough polysiloxane to act as a binder for the SiO2, therefore a shrinkage upon solidification of the coating film caused cracking within the nanocomposite film. The optimum ratio was found to be at 40 wt.% ≤SiO2 ≤60 wt.%, where the films had a transparent, crack free hard coating, with excellent scratch resistance, good adhesion and very good environmental resistance. The nanoindentation revealed that the nanocomposite film, at the optimum loading, possessed a higher strength with a higher SiO2 loading. Film properties, including hardness, scratch resistance, adhesion and environmental resistance were also examined. The morphology of nanocomposite films was identified by atomic force microscopy (AFM) and scanning electron microscopy (SEM). © 2011 Canadian Society for Chemical Engineering  相似文献   

4.
We carried out deconvolution of the molecular weight distribution curves from gel permeation chromatography for polyolefins into individual active sites considering Flory distribution by an evolutionary‐computing‐based real‐coded genetic algorithm, a nonlinear multivariate optimization algorithm. We applied the deconvolution to homopolymers of 1‐octene synthesized using heterogeneous Ziegler–Natta catalysts with different amounts of hydrogen. The molecular weight distribution was deconvoluted in to five Flory distributions, which showed a sensitivity to hydrogen amounts. With no hydrogen presence, the peaks corresponding to high‐molecular‐weight fractions were intense. As the amount of hydrogen was increased, not only did the intensities of the high‐molecular‐weight peaks decrease, but also peaks corresponding to low‐molecular‐weight fractions were observed. The method allowed us to determine the active site distribution of the polymer molecular weight distribution obtained from gel permeation chromatography. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Precursor gel fiber was formed by extruding cellulose acetate spinning solution into Tantalum (Ta) pentaethoxide acetone solution in a coagulation bath. Gel formation must be due to the coordination of Ta to OH and CO groups on the pyranose ring. The resultant precursor gel fiber was converted into carbide (TaC) or nitride (TaN) fibers by pyrolyzing them in Ar, N2, or NH3 atmospheres. TaC and TaN fibers can be obtained near theoretical temperatures calculated from thermodynamics data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4320–4324, 2006  相似文献   

6.
In recent decades, the interest in metallodrugs as therapeutic agents has increased. Casiopeinas are copper-based compounds that have been evaluated in several tumor cell lines. Currently, casiopeina III-ia (CasIII-ia) is being evaluated in phase I clinical trials. The aim of the present work is to develop a niosome formulation containing CasIII-ia for intravenous administration through a quality-by-design (QbD) approach. Risk analysis was performed to identify the factors that may have an impact on CasIII-ia encapsulation. The developed nanoformulation optimized from the experimental design was characterized by spectroscopy, thermal analysis, and electronic microscopy. In vitro drug release showed a burst effect followed by a diffusion-dependent process. The niosomes showed physical stability for at least three months at 37 °C and 75% relative humidity. The in vitro test showed activity of the encapsulated CasIII-ia on a metastatic breast cancer cell line and the in vivo test of nanoencapsulated CasIII-ia maintained the activity of the free compound, but showed a diminished toxicity. Therefore, the optimal conditions obtained by QbD may improve the scaling-up process.  相似文献   

7.
In a recent paper, Liu X. and Xu X. [2009. Modelling of dense gas-particle flow in a circulating fluidized bed by Distinct Cluster Method (DCM). Powder Technology 195, 235-244] reported the results of numerical simulations of a circulating fluidized bed using Discrete Cluster Method (DCM). We comment on the veracity of the use of a one-way turbulence model to predict turbulence in the context of dense and moderately dense two-phase flows.  相似文献   

8.
Bismuth-doped strontium titanate thin films with pure perovskite phase have been successfully deposited on Pt (1 1 1)/Ti/SiO2/Si substrate by polymer-assisted sol–gel method. Poly(vinyl acetate) (PVAc) in precursor solution promoted the formation of perovskite phase during the heat treatment. SEM results revealed an increasing thickness from 40 to 80 nm every single layer and a porous structure with the addition of PVAc. The addition of polymer made the dielectric constant decrease from 140 to 40 and the tunability slightly increase compared with films without polymer in precursor.  相似文献   

9.
The sol–gel process has been frequently employed for preparation of high performance silica/polymer composites. In this paper, novel sol–gel precursor triethoxysilane‐terminated poly(urethane‐imide) (PUI‐Si), combining the advantages of polyurethane (PU) and polyimide, was synthesized and characterized. Then PUI‐Si was incorporated into the epoxy resin matrix to prepare a series of EP/PUI‐Si organic‐inorganic hybrids through an in situ sol–gel process and crosslinking reactions. The thermal stability of EP/PUI‐Si hybrids was evaluated by thermogravimetric analysis and the results show that the PUI‐Si could significantly improve the thermal properties of epoxy resin. The initial decomposition temperature of composites with 50 wt% PUI‐Si reached 347.1 °C, 157.3 °C higher than that of neat epoxy resin. Furthermore, the tensile strength and breaking elongation can also be clearly improved by adding a suitable amount of PUI‐Si. Similarly, the water contact angle increased to 97.4° with 70 wt% PUI‐Si, showing a hydrophobic surface. The morphology was investigated by transmission electron microscopy and the results reveal that the silica particles are smaller than 20 nm and have a strong interaction with the epoxy resin matrix, resulting in the above‐mentioned high performance properties. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
2‐Mercapto‐5‐methylpyridine‐N‐oxide (MMPNO) and its sodium salt (NaMMPNO) were synthesized. The reaction of the latter with Fe3+ generates Fe(MMPNO)3 chelate. The thermolysis of this chelate at 350 °C yielded highly pure reddish‐brown γ‐Fe2O3 nanocrystallites with an average particle size of 6.2 nm, a particle size range of 4.2 to 14.8 nm, and a specific surface area of 51.5 m2g–1. The thermolysis process was optimized using the 22 fractional design. Quantitative tests and characterization of products were carried out by UV‐vis spectroscopy, XRD, LLS, SEM, TGA, BET, TEM, FT‐IR, elemental microanalysis, and classical analytical measurements.  相似文献   

11.
Atactic and syndiotactic‐rich poly(vinyl alcohol) fibers were prepared by gel spinning using ethylene glycol as a solvent. The mechanical properties of the fibers were independent of the degree of polymerization, although they were dependent on syndiotacticity. The amounts of tie molecules and the difference between the amounts of hydrogen bonds and microvoids determine the mechanical properties. The mechanical properties depended on the orientation of the segments in the amorphous parts. The entangled segments produced in the amorphous parts as a consequence of the difficulty of drawing were considered to form the voids and cracks, which grow to a banded structure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1970–1977, 2002  相似文献   

12.
Composite poly(ε‐caprolactone) (PCL)–silica materials for potential use in orthopaedic applications have been prepared by a sol–gel method using an experimental design approach to investigate the effect of synthesis variables, separately and together, on the physical form of the organic polymer. A combination of differential scanning calorimetry, X‐ray diffraction and Fourier‐transform infrared methods were used to obtain information on the arrangement of the organic polymer in the hybrid material. As our studies investigated the effect of synthesis variables simultaneously, it was possible to establish that the increase of tetraethyl orthosilicate (TEOS)/PCL and HCl/TEOS molar ratios decreased the poly(ε‐caprolactone) crystallinity and provided for a better mixing of the two phases. At a mechanistic level it was possible to show that increase in catalyst content affected the condensation of silicon containing species. In vitro calcium phosphate‐forming ability tests using the static biomimetic method have been carried out on selected PCL–silica sol–gels. In vitro bioactivity was only observed for PCL–silica sol–gel composites with high silica content (30% weight). Changes in catalyst levels had a smaller but still significant effect. Calcium phosphate formation on largely non‐porous surfaces is proposed to occur via the formation of a silica sol–gel layer, and is influenced by the topography and the chemistry of the materials surface. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
Aluminium titanate films thicker than 0.5 μm have been synthesized by sol–gel methods. The films have been deposited via repetitive dip-coating on silicon wafers and their thermal stability has been tested as a function of the annealing time and temperature. The sol–gel approach has allowed the formation of the aluminium titanate phase at temperatures (700 °C) much lower than those necessary for solid-state reactions (1450 °C). Magnesium oxide has been used to improve the thermal stability of the films at high temperatures. The behavior of samples prepared with two different Mg content, i.e. Mg0.2Al1.6Ti0.8O5 and Mg0.6Al0.8Ti1.6O5, has been studied. The films have proven to be stable at 1150 °C, for up to 90 h. X-ray photoelectron spectroscopy has shown that after firing at 500 °C the surface chemical composition of the films is in accordance with the nominal one, whilst at higher annealing temperatures some differences, attributed to diffusion effects, have been observed.  相似文献   

14.
Advanced sol–gel methods using a secondary solvent addition into (Pb, La)(Zr, Ti)O3 (PLZT) sol–gel solution and a methanol pre-treatment of sapphire substrates are demonstrated. For the secondary solvent addition, the additive affected the crystallinity and electro-optic (EO) property of PLZT films and only methanol addition can improve them. In addition, the methanol pre-treatment is also appeared to be effective to improve film characteristics.

Through these optimizations, epitaxially grown PLZT thin films on r-cut sapphire are obtained and a high Pockels coefficient which is comparable to those of bulk PLZTs is achieved. It is believed that these PLZT thin films are applicable for integrated EO devices and open the door for the future data communication systems.  相似文献   


15.
In this study, the microfiltration of polyester fluid containing solid suspension has been investigated under constant pressure. A membrane module, which consists of a microfilter paper of surface area of 19.4 cm2 and a SS‐316 net support (160 mesh), was used. It was found that the homogeneous sodium acetate suspension in polymer can be completely removed by the membrane filter paper to yield a very clear polymer product. The property and rheology of polyester fluid with suspending solids have been studied. The polymer fluid can be viewed as a Newtonian fluid in this work. The filtration behavior in the membrane system was simulated by the blocking filtration law. Satisfactory fit between experimental data and theoretical calculations was demonstrated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2303–2312, 1999  相似文献   

16.
A novel photoresponsive functional monomer bearing a siloxane polymerizable group and azobenzene moieties was synthesized, and then photoresponsive molecularly imprinted sol‐gel polymers were successfully fabricated from the synthesized functional monomer, using (4‐chloro‐2‐methylphenoxy)acetic acid (MCPA) as a molecular template. The photoisomerization properties of the functional monomer are retained after incorporation into the rigid three‐dimensional crosslinked polymer matrix. The template is then removed from the resulting polymer to generate pores, which are complementary to the template in shape, size and functionality. The substrate affinity of the molecularly imprinted polymer (MIP) receptor sites is photoswitchable. This can be attributed to the photoisomerization of azobenzene chromophores within the MIP receptors, resulting in alteration of their geometry and the spatial arrangement of their binding functionalities. The binding affinity of the imprinted recognition sites was switchable by alternate irradiation with UV and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the transcis isomerization could regulate the affinity for MCPA. To study the hydrogen bond interactions between template molecules and functional monomer, computational molecular modeling was employed. The data indicate that the design of the MIP is rational. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
Photocatalytic activity of titania with poly(ethylene glycol) (PEG) in the sample films made under different operating conditions was investigated by kinetic analysis of photodegradation tests. The sample films, composed of PEG and nano-TiO2 particles, were prepared by sol–gel processing and then treated thermally under an atmosphere of wet and dry air at different temperatures. After the thermal treatment, photocatalytic activities of the films were evaluated by a UV-exposure test. Results showed that the photoactivity was enhanced by processing in an atmosphere of wet air at 100 °C. Moreover, the presence of poly(ethylene glycol), and the change in surface morphology in the sample films were verified to be the most influential and significant factors to affect the photoactivitic activity.  相似文献   

18.
In this work, dopants and buffer layers were employed to simultaneously lower the dielectric loss and enhance the dielectric tunability of Ba(Zr0.3Ti0.7)O3 (BZT) thin films. The BZT, 1 mol% La doping BZT (BZTL) with and without La0.5Sr0.5CoO3 (LSCO) buffer layers were prepared by sol–gel technique. The dielectric properties of the thin films were investigated as a function of frequency and current bias field. As a result, the BZTL thin film with LSCO buffer layer showed lower dielectric loss and higher tunability simultaneously, which can be a promising candidate for tunable microwave device applications.  相似文献   

19.
(Ba0.5Sr0.5)TiO3 thin films have been deposited by sol–gel technique and the effect of pre-sintering temperature on the structural and dielectric properties has been studied. The sol was prepared from barium acetate and strontium acetate powders by dissolving them in acetic acid; while titanium isopropoxide was used as titanium source. Acetyl acetone, 2-methoxyethanol, and formamide were used as chelating agent, diluting reagent, and for getting crack free films, respectively. Two sets of films were prepared; one set pre-sintered at 400 °C while the other one at 600 °C. In all the cases, the final sintering temperature was kept fixed at 700 °C for 2 h. These films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dielectric constant, and loss measurements and AC conductivity studies. It has been found that with an increase in the pre-sintering temperature from 400 to 600 °C, the dielectric constant increases from 225 to 383 (measured at 100 kHz); whereas, the loss tangent remains nearly constant at 0.03–0.05. The XRD results show better crystallinity and enhanced grain growth in case of films pre-sintered at 600 °C. The FTIR spectra reveals that there is significant removal of organic materials in films with higher pre-sintering temperature as compared to that with lower pre-sintering temperature. The AC conductivity studies show a decrease in the frequency exponent ‘s’ with an increase in the pre-sintering temperature which has been correlated with the reduction in oxygen vacancy densities in the sample with higher pre-sintering temperature.  相似文献   

20.
L ‐Type amino acid transporter 1 (LAT1) is a transmembrane protein expressed abundantly at the blood–brain barrier (BBB), where it ensures the transport of hydrophobic acids from the blood to the brain. Due to its unique substrate specificity and high expression at the BBB, LAT1 is an intriguing target for carrier‐mediated transport of drugs into the brain. In this study, a comparative molecular field analysis (CoMFA) model with considerable statistical quality (Q2=0.53, R2=0.75, Q2 SE=0.77, R2 SE=0.57) and good external predictivity (CCC=0.91) was generated. The model was used to guide the synthesis of eight new prodrugs whose affinity for LAT1 was tested by using an in situ rat brain perfusion technique. This resulted in the creation of a novel LAT1 prodrug with L ‐tryptophan as the promoiety; it also provided a better understanding of the molecular features of LAT1‐targeted high‐affinity prodrugs, as well as their promoiety and parent drug. The results obtained will be beneficial in the rational design of novel LAT1‐binding prodrugs and other compounds that bind to LAT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号