首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel broadband bow‐tie antenna with high‐gain performance throughout the operating band is proposed and investigated in this article. This folded sectorial bow‐tie antenna is fed by a Г‐shaped strip balun, and the electromagnetic coupling feed mechanism is easy to optimize the impedance matching. The study of proposed antenna performance with different geometric parameters has been conducted. The final design is fabricated and measured, and the results exhibit a good impedance bandwidth of approximately 93.3% for VSWR≤2 ranging from 1.35 to 3.71 GHz, stable gain of 8.43‐10.02 dBi, and unidirectional radiation patterns over the whole operating band. Broadband coverage, stable high‐gain performance, and the simple structure make this antenna an excellent candidate for wireless communication systems.  相似文献   

2.
In this article, a V‐band printed log‐periodic dipole array (PLPDA) antenna with high gain is proposed. The antenna prototype is designed, simulated, fabricated, and tested. Simulation results show that this antenna can operate from 42 to 82 GHz with a fractional impedance bandwidth of 64.5% covering the whole V‐band (50–75 GHz). The antenna has a measured impedance matching bandwidth that starts from 42 to beyond 65 GHz with good agreement between the experimental and simulated results. At 50 and 65 GHz, the antenna has a measured gain of 10.45 and 10.28 dBi, respectively, with a gain variation of 2.6 dBi across the measured frequency range. The antenna prototype exhibits also stable radiation patterns over the operating band. It achieves side‐lobe suppression better than 17.26 dB in the H‐plane and better than 8.95 dB in the E‐plane, respectively. In addition, the cross‐polarization component is 18.5 dB lower than the copolarization with front‐to‐back ratio lower than 24.1 dB in both E‐ and H‐planes across the desired frequency range. Based on a comparison of performance among the reported work in the literature, we can say that the proposed PLPDA antenna is a proper candidate to be used in many applications at V‐band frequency. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:185–193, 2015.  相似文献   

3.
The contribution of this work is to propose a cavity‐based antenna with both dual‐polarization and bandpass filter characteristics. Proper cavity resonators and antenna based on the substrate integrated waveguide (SIW) technology are designed utilizing the low temperature co‐fired ceramics (LTCC) for demonstration. By properly arranging and coupling the cavities, a shaping of filter‐like response for the antenna gain and input return loss can be obtained. Measures for achieving a good isolation and a low cross‐polarization level have also been taken into account during the design procedure. A 4th‐order prototype working in the Ka‐band is designed and fabricated. Investigations show that the antenna presents a good isolation below ‐29 dB across the operating bandwidth, together with a cross‐polarization level lower than ‐25 dB at the center working frequency. The performance of the prototype has been verified in the measurement.  相似文献   

4.
A novel planar, dual‐band antenna composed of a symmetrical dipole and balanced antipodal slot radiator with low ground plane effect is proposed and investigated. Operation principle of the antenna is analyzed and design equations are drawn first. Then, the return loss, surface current distribution, radiation patterns, and gain are numerically and experimentally studied in detail. The impedance bandwidth of the antenna is from 2.36 to 2.56 and 5.13 to 12 GHz for return loss larger than 10 dB. The antenna has omnidirectional pattern at the lower band and quasi‐directional pattern at the higher band, and it has good immunity to a neighboring, large ground plane. The proposed antenna should be useful for dual‐band communication or identification systems. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

5.
A three‐element quasi Yagi‐Uda antenna array with printed metamaterial surface generated from the array of uniplanar capacitively loaded loop (CLL) unit‐cells printed on the substrate operating in the band 25‐30 GHz is proposed. The metamaterial surface is configured to provide a high‐refractive index to tilt the electromagnetic (EM) beam from the two dipole antennas placed opposite to each other. The metamaterial region focuses the rays from the dipole antenna and hence increases the gain of the individual antennas by about 5 dBi. The antenna elements are printed on a 10 mil substrate with a center to center separation of about 0.5 λ 0 at 28 GHz. The three‐element antenna covers 25‐30 GHz band with measured return loss of 10 dB and isolation greater than 15 dB between all the three ports. The measured gain of about 11 dBi is achieved for all the antenna elements. The three antenna elements radiate in three different directions and cover a radiation scan angle of 64°.  相似文献   

6.
This article presents a simple, compact, and lightweight substrate integrated waveguide (SIW) backed self‐quadruplexing antenna for quad‐band applications. The design procedure is straightforward. Topside of the SIW cavity is modified to form four patches of different lengths which are fed separately by four 50‐Ω microstrip feed lines and operate at 5.14, 5.78, 6.74, and 7.74. It attains 4.1, 4.96, 6.2, and 6.1 peak gain at the above frequencies, respectively. The observed front‐to‐back‐ratio is more than 17.5 dB and the isolation level is above 28 dB. This antenna topology allows to redesign each resonant frequencies as per application requirement using a single parameter and without disturbing other performances. Design guidelines for developing the proposed antenna are provided. A prototype antenna is fabricated using RT‐Duroid (5870) substrate and characterized for validation. The proposed antenna is suitable for handheld microwave devices for C‐band communication.  相似文献   

7.
This short communication presents a substrate integrated waveguide planar cavity slotted antenna array. The proposed antenna array, excited in its TE33 higher mode, incorporates a grounded coplanar‐waveguide (CPW) CPW‐feeding excitation mechanism. The electromagnetic energy is coupled to the air through 3 × 3 slot array etched on top metallic layer. The proposed antenna operates in the X‐band for the frequency range around the 10 to 11 GHz with resonances at 10.4 and 10.8 GHz frequencies. The proposed antenna array was fabricated and tested. Experimental results show good impedance matching with enhanced radiation characteristics, in terms of peak gain, cross‐polarization level, and low back‐radiation. The proposed antenna has the advantages of low‐footprints, lightweight, high gain, low‐cost, and ease of integration with other electronic circuits. With these characteristics, the proposed antenna array can find its applications in compact wireless digital transceivers.  相似文献   

8.
This work focusing on the dual‐band antenna design with rectifying circuit for energy transfer system technology for enhancement gain performance. The air gap technique is applied on this microstrip antenna design work to enhance the antenna gain. The work begins with designing and analyzing the antenna via the CST Microwave Studio software. After validation on acceptable performance in simulation side is obtained, the return loss, S11 of the antenna is measured using vector network analyzer equipment. The rectifier circuit is used to convert the captured signal to DC voltage. This projected dual‐band antenna has successfully accomplished the target on return loss of ?44.707 dB and ?32.163 dB at dual resonant frequencies for 1.8 GHz and 2.4 GHz, respectively. This proposed antenna design benefits in low cost fabrication and has achieved high gain of 6.31 dBi and 7.82 dBi for dual‐band functioning frequencies.  相似文献   

9.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   

10.
In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < ?10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17 λ0 ( λ0 is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system.  相似文献   

11.
A circularly polarized multiple‐input multiple‐output (MIMO) antenna is presented for global system for mobile (GSM) (710 MHz) and lower long term evolution (LTE) (900 MHz) frequency bands. The antenna consists of four ports with four impedance transformers on the bottom substrate and elliptical rings on the upper substrates. Impedance transformers include open stub and irregular microstrip lines in order to control impedance matching and resonant frequencies. Two upper substrates that contain orthogonal elliptical rings cause the circular polarization property of the proposed antenna. The results of measurement for the presented antenna show its performance with S‐parameters of less than ?10 dB in the frequency ranges of 699‐750 MHz for GSM and 880‐1115 MHz for lower LTE applications. Also, the gain and radiation efficiency are higher than 5dBi and 70%, respectively.  相似文献   

12.
This article thoroughly investigates a novel modified biquad dipole antenna with a simple structure, wideband, high‐gain and linear polarization key features for wireless communication systems fabricated on FR4 substrate. The proposed antenna is investigated using circular wire loop antenna designing and is, then, extended to a strip structure antenna. Here, a circular reflector is employed to achieve maximum gain, while a coax line feeds the dipole element. Additionally, the presence of a balun, or lack thereof, is examined. The bazooka balun balances the coaxial cable and increases the bandwidth. Consequently, a wide bandwidth and a triple bandwidth are achieved. The resulting parameters demonstrate that the entire S, partial L and C IEEE radio bands comprise the bandwidth of the proposed antenna. The simulated current distribution, experimented and simulated efficiency, radiation pattern, reflection coefficient and gain of the designed antenna are also examined. The simulation and experimentation results exhibit an impedance bandwidth of 105.4% (1.3‐4.2 GHz) for (S11 < ?10 dB). The broadside radiation pattern fills the entire band with maximum simulated and measured gains of 11.8 and 11.02 dBi, respectively. The simulated and measured results tie in closely with each other.  相似文献   

13.
A dual‐band MIMO slot antenna with polarization diversity and improved gain is proposed in this article. The antenna is composed of two C‐type back‐to‐back connected slot resonators and offers resonances at 3.5 and 5.2 GHz. This antenna element is further used to design a MIMO antenna. By introducing one U‐shaped slot between two antenna elements, isolation between the ports of this MIMO antenna is improved further. Finally, an artificial magnetic conductor (AMC) is placed below the MIMO antenna to enhance its gain. Gain enhancement of 1.5 and 2.2 dB is achieved at lower and upper band, respectively. S‐parameters, radiation patterns, gain, envelope correlation coefficient, and channel capacity loss are investigated to conclude about its performances in MIMO applications. Dual band dual polarization (circular and linear), improved isolation, polarization diversity (right‐hand circular polarization and left‐hand circular polarization), gain enhancement all are presented in a simple design represents the novelty of the proposed MIMO antenna.  相似文献   

14.
A four‐port multiple input multiple‐output (MIMO) antenna with common radiating element is proposed for 2.4 GHz Wi‐Fi applications. It comprises a modified circular radiator fed by four identical modified feedlines, partial ground planes, and a diagonal parasitic element (DPE). The parasitic element is used to enhance the interport isolation. The antenna has a 2:1 Voltage standing wave ratio (VSWR) impedance band 2.34‐2.56 GHz and nearly omnidirectional radiation patterns. The radiation efficiency is more than 79% and gain is 2 dBi at resonant 2.43 GHz. The isolation in the given frequency band is 10 dB. At the 2.43 GHz, the isolation between adjacent ports (1, 2 and 1, 4) is 14 dB and between opposite ports (1, 3) is 12 dB. The mean effective gain (MEG) ≤ ?2.7 dB and envelope correlation coefficient is <0.01. The ?10 dB total active reflection coefficient bandwidth is 202 MHz. The antenna is designed for a Wi‐Fi device and the effectiveness of antenna has been checked for distance of ½ feet from the human head. The specific absorption rate (SAR) is found to be ≤0.17 W/Kg by CST simulation tool.  相似文献   

15.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   

16.
In this article, a substrate integrated waveguide (SIW) antenna utilizing odd‐mode spoof surface plasmon polariton (SSPP) for broadside radiation is proposed. Double gratings are etched on the top surface of SIW and the SSPP odd‐mode is excited on this hybrid SIW‐SSPP structure. The proposed SIW antenna has open‐circuit termination and can realize broadside radiation. A prototype of the SIW‐based odd‐mode antenna is fabricated. Reasonable accordance is achieved between measured results and simulated results. The antenna impedance bandwidth is about 5.5% (12.4~13.1 GHz) with |S11| < ?10 dB. Stable broadside radiation is also realized within the operating band of 12.3~13.3 GHz and the measured gain varies from 5.66 to 6.34 dB in the frequency band. The proposed broadside radiation antenna is suitable for wireless communication systems due to its compact structure and good radiation performances.  相似文献   

17.
A substrate integrated waveguide (SIW) circularly polarized (CP) antenna with omnidirectional radiation in the azimuthal plane is proposed. The antenna consists of five identical end‐fire CP antenna elements in a pentagonal array configuration, which is loaded on a circular substrate. Each element contains an H‐plane horn antenna in SIW structure and a printed dipole antenna. Five parasitic curve elements are introduced to improve the omnidirectional property of the antenna. Combined with complementary dipoles theory and SIW technology, prototype antenna is designed, fabricated and measured. With a low profile of 0.024λ0, the antenna has a 10‐dB return‐loss impedance bandwidth of 4.08% (2.4~2.5 GHz) and a 3‐dB axial‐ratio (AR) bandwidth of 5.76% (2.36~2.50 GHz). The antenna works well in the 2.45 GHz ISM band, with good cross‐polarization and excellent omnidirectional property.  相似文献   

18.
Operating principle and design approach of a novel dual‐band aperture‐dipole composite antenna are proposed. It is shown that multiple operating modes can be simultaneously excited by employing offset‐feeding technique at first. After the behavior of each mode is studied, the operating principle of the antenna is analyzed and described. Then, an improved dual‐band aperture‐dipole composite antenna is formed and it is designed by using the proposed approach. The antenna is experimentally verified. It is demonstrated that two operating bands for radiation are ranged from 2.36 to 2.58 GHz and from 4.1 to 15.72 GHz, respectively, in which the reflection coefficient are both 相似文献   

19.
This paper presents a novel geometry of inscribed hexagonal slotted microstrip antenna for dual‐band performance where the fractal iteration has been made by introducing concentric slots in the patch geometry. Using the equivalence principle and cavity model, the basic geometry of the hexagonal slotted patch is analyzed, and the resonant frequencies of different modes of the patch are computed. Higher‐order modes of the patch antenna are used to obtain dual band. Good performance in terms of the reflection coefficient is proved with the help of parametric analysis. The antenna geometry is simulated using electromagnetic simulation software based on the finite‐element method. The prototype of this antenna is fabricated and tested. The practical results match with the simulated results. The proposed antenna provides improved average gain. The peak values of measured gain are found to be 5.238 and 7.023 dBi—in the two bands 5.85 to 6.48 GHz and 7.28 to 8.63 GHz, respectively. Stable radiation patterns with good average gain make the proposed antenna appropriate for long‐range transmission. Furthermore, low profile and low cost make this antenna suitable for the future point‐to‐point high‐speed wireless communication applications.  相似文献   

20.
In this article, a high‐gain and dual‐polarized antenna with UWB operation is proposed. The antenna is composed of two tapered dipoles as radiating elements, which are arranged orthogonally and fed perpendicularly to achieve polarization diversity. A metallic cavity reflector is placed behind the radiator for high gain radiation entire the operating bandwidth. To validate the design method, an antenna prototype is designed, fabricated, and measured. The measured results demonstrate that the proposed design has good performance with |S11| ≤ ?10 dB and isolation ≥20 dB over a frequency band 3.2‐8.8 GHz, equivalently to about 93.3%. In addition, unidirectional radiation pattern and broadside gain of from 8.1 to 11.8 dBi are obtained across the operating bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号