首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A multifunctional Ag/TiO2/reduced graphene oxide (rGO) ternary nanocomposite was prepared by a one-step photochemical reaction with TiO2 and Ag nanoparticles successively deposited on reduced graphene oxide. The structure, morphology, composition, optical, and photoelectrochemical properties of Ag/TiO2/rGO were investigated in detail. Meanwhile, the ternary nanocomposite possessed much higher adsorption capacity to organic dyes compared with bare TiO2 and binary Ag/TiO2, which would help to its use for surface-enhanced Raman scattering detection and photocatalytic degradation. Due to the charge transfer between rGO and organic dyes and enhanced electromagnetic mechanism of Ag, Ag/TiO2/rGO nanocomposites as surface-enhanced Raman scattering substrates demonstrated dramatically improved sensitivity and good uniformity. The detection limit of rhodamine 6G (R6G) was as low as 10−9 mol/L, and the relative standard deviation values of the intensities remained below 5%. Most importantly, the synergistic coupling effect of three components extended the photoresponse range and accelerated separation of the electron-hole pairs, leading to greatly improved photocatalytic activity under simulated sunlight. The maximum rate constant (k, 0.06243 min−1) of Ag/TiO2/rGO was 50 and four times higher than that of TiO2 and Ag/TiO2, respectively.  相似文献   

2.
TiO2 thin films were fabricated through hydrothermal method. Silver nanoparticles were loaded on TiO2 thin films via photoreduction technique. Subsequently, the graphene quantum dots (GQDs) were spin‐coated on the Ag/TiO2 nanocomposites thin films. The crystal structure, surface morphology and UV‐vis absorbance were tested by XRD, SEM and ultraviolet‐visible spectrophotometer. These results indicated that Ag nanoparticles and GQDs are anchored on the TiO2 nanorods. Absorbance of Ag/TiO2 and GQDs/Ag/TiO2 nanocomposite thin films have been extended into the visible region. Visible‐light response of the samples were investigated by electrochemical workstation. The photoresponse of the sample can be enhanced by sensitization of the Ag nanoparticles and GQDs. The enhanced visible‐light response may be due to the surface plasmon resonance of silver nanoparticles and visible absorbance of GQDs. The highest photocatalytic activity has been observed in the 9‐GQDs/Ag/TiO2 composite thin film. The efficient charge separation and transportation can be achieved by introducing the Ag nanoparticles and GQDs in the TiO2 thin film.  相似文献   

3.
《Ceramics International》2016,42(14):15861-15867
A visible light active photocatalyst, Ag/TiO2/MWCNT was synthesized by loading of Ag nanoparticles onto TiO2/MWCNT nanocomposite. The photocatalytic activity of Ag/TiO2/MWCNT ternary nanocomposite was evaluated for the degradation of methylene blue dye under UV and visible light irradiation. Ag/TiO2/MWCNT ternary nanocomposite exhibits (~9 times) higher photocatalytic activity than TiO2/MWCNT and (~2 times) higher than Ag/TiO2 binary nanocomposites under visible light irradiation. The enhancement in the photocatalytic activity is attributed to the synergistic effect between Ag nanoparticles and MWCNT, which enhance the charge separation efficiency by Schottky barrier formation at Ag/TiO2 interface and role of MWCNT as an electron reservoir. Effect of different scavengers on the degradation of methylene blue dye in the presence of catalyst has been investigated to find the role of photogenerated electrons and holes. Simultaneously, the Ag/TiO2/MWCNT shows excellent photocatalytic stability. This work highlights the importance of Ag/TiO2/MWCNT ternary nanocomposite as highly efficient and stable visible-light-driven photocatalyst for the degradation of organic dyes.  相似文献   

4.
TiO2/graphene‐MWCNT nanocomposite was prepared using solvothermal reaction for the effective distribution of TiO2 nanoparticles on carbonaceous materials. TiO2/graphene‐MWCNT nanocomposite was immobilized in poly(vinyl alcohol) (PVA) matrix for a convenient recovery after wastewater purification. MWCNT was incorporated in a nanocomposite not only to prevent the restacking of graphene but also to increase the electron transfer from TiO2. The detailed characterization of the nanocomposite was performed using SEM, EDX, XRD, XPS, and FTIR. The photocatalytic performance of PVA/TiO2/graphene‐MWCNT nanocomposite was investigated by UV spectroscopy on the basis of degradation of organic pollutants. PVA/TiO2/graphene‐MWCNT nanocomposite showed improved photocatalytic decomposition of more than 70% of residual dye left in case of using PVA/TiO2/graphene nanocomposite due to the improved electron transfer and the higher adsorption of organic pollutants. PVA/TiO2/graphene‐MWCNT nanocomposite was suitable as a promising material for the recyclable photocatalytic wastewater purification system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40715.  相似文献   

5.
《Ceramics International》2017,43(12):8655-8663
The heterogeneous titanium oxide-reduced graphene oxide-silver (TiO2/RGO/Ag) nanocomposites were successfully prepared by incorporation of two dimensional (2D) RGO nanosheets and spherical silver nanoparticles (NPs) into the 1D TiO2 nanofibers. The novel TiO2/RGO/Ag nanocomposites were synthesized by loading TiO2 nanofibers, prepared via electrospinning technique, on the RGO/Ag platform. The resulting nanocomposites have been characterized using various techniques containing transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultra-violet-visible (UV–vis) spectroscopy. Microscopic studies clearly verified the existence of TiO2 nanofibers with Ag NPs on the surface of RGO sheet and formation of TiO2/RGO/Ag nanocomposites. Moreover, the results of UV–vis spectroscopy demonstrated that TiO2/RGO/Ag nanocomposites extended the light absorption spectrum toward the visible region and significantly enhanced the visible-light photocatalytic performance of the prepared samples on degradation of rhodamine B (Rh. B) as a model dye. It was found that, incorporation of 50 µl RGO/Ag into the TiO2 nanofibers lead to a maximum photocatalytic performance. Also, the improvement of the inactivation of Escherichia coli (E. coli) bacteria under visible-light irradiation was revealed by introduction of RGO/Ag into the TiO2 matrix. The significant enhancement in the photo and bio-activity of TiO2/RGO/Ag nanocomposites under visible-light irradiation can be ascribed to the RGO/Ag content by acting as electron traps in TiO2 band gap.  相似文献   

6.
《Ceramics International》2016,42(14):15247-15252
A hybrid material of reduced graphene oxide (RGO) sheets decorated with CdS-TiO2 NPs was prepared through a facile one-pot hydrothermal method. The assembly of CdS-TiO2 nanoparticles (NPs) on RGO sheets was in-situ produced. As-synthesized nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy disperse X-ray spectrum (EDS), fourier transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy (PL). The obtained nanocomposites exhibited a good photocatalytic activity for the visible-light-induced decomposition of methylene blue (MB) dye and hydrolysis of ammonia borane. The results showed that by incorporation of CdS and TiO2 NPs on graphene oxide sheets the photocatalytic efficiency was enhanced. The significant enhancement in the photocatalytic activity of CdS-TiO2/RGO nanocomposites under visible light irradiation can be ascribed to the effect of CdS by acting as electron traps in TiO2 band gap. Reduced graphene oxide worked as the adsorbent, electron acceptor and a photo-sensitizer to efficiently enhance the dye photo decomposition. Such nanocomposite photocatalyst might find potential application in a wide range of fields, including hydrogen energy generation, air purification, and wastewater treatment.  相似文献   

7.
Graphene/TiO2–Bi2O3 nanohybrids were synthesized by one-step PAA-assisted hydrothermal method with a low-temperature treatment. Their morphology, structure and photocatalytic property were investigated accordingly. The SEM and TEM results showed that the nanohybrids composed of TiO2 and Bi2O3 nanoparticles with the size of about 10 nm were uniformly covered on the graphene sheets. Furthermore, the resultant samples presented excellent photocatalytic activity for RhB and recycle property, in which 95% RhB was degraded within 10 min and a good activity was maintained in the seven recycling tests, besides the hybrids also possess good activity in visible light. The enhancement of photocatalytic activity is attributed to efficient transfer of the photogenerated electrons from the CB of semiconductor nanoparticles to graphene and the homogeneity of nanoparticles.  相似文献   

8.
Polymer/semiconductor oxide nanocomposite films have been intensively investigated for various applications. In this work, we reported a simple hydrothermal method to fabricate highly transparent poly(vinyl alcohol)/titanium dioxide (PVA/TiO2) nanocomposite films with enhanced visible-light photocatalytic activity. The as-prepared PVA/TiO2 nanocomposite films showed high optical transparency in the visible region even at a high TiO2 content (up to 40 wt.%). The determination of photocatalytic activity by photodegradation of methyl orange (MO) and colorless phenol showed that PVA/TiO2 nanocomposite films exhibited enhanced visible-light photocatalytic activity and excellent recycle stability. This work provided new insights into fabrication of polymer/TiO2 nanocomposites as high performance photocatalysts in waste water treatment.  相似文献   

9.
《Ceramics International》2017,43(6):5351-5355
In this work, TiO2‒Ag nanocomposite thin films were fabricated for the first time via simultaneous plasma-enhanced chemical vapor deposition and physical vapor deposition of TiO2 and Ag nanoparticles in the gas-phase, respectively. The presence of Ag nanoparticles in the prepared nanocomposites has been confirmed using transmission electron microscopy and energy dispersive X-ray spectrometry techniques. The obtained electron microscopy images showed that the average size of TiO2‒Ag nanoparticles was larger than that of pristine TiO2. Moreover, the temperature of the anatase transformation into the rutile phase was decreased due to the presence of Ag nanoparticles in the TiO2 matrix, while the photocatalytic activity of the produced nanocomposite (estimated by studying the degradation of methylene blue aqueous solution under UV irradiation) was 35% greater than that of pristine TiO2. Therefore, the addition of Ag nanoparticles into the TiO2 matrix significantly affected the morphology, phase transformation temperature, and photocatalytic performance of the fabricated material.  相似文献   

10.
《Ceramics International》2017,43(7):5450-5456
The Ag-TiO2/r-GO nanocomposite was synthesized via a facile one-pot solvothermal method. X-ray diffraction (XRD), Transmission electron microscopy (TEM),High resolution transmission electron microscopy(HRTEM), UV–vis diffuse reflectance spectroscopy (DRS), Fourier transformed infrared spectroscopy (FT-IR), Photoluminescence (PL) and N2 adsorption-desorption were used for the characterization of prepared samples. The adsorbent and photocatalytic performance of prepared samples were evaluated by remove of Rh B dyes and reduction of CO2. Both the adsorbent and photocatalytic ability of all the Ag-TiO2/r-GO samples were much higher than pure hollow TiO2. The excellent adsorbent capacity can be attributed to the large BET surface area and the enhanced photocatalytic activity can be assigned to the predominant properties of graphene and the localized surface plasmon(LSPR) effect of Ag nanoparticles.  相似文献   

11.
Graphene/carbon composite nanofibers (CCNFs) with attached TiO2 nanoparticles (TiO2–CCNF) were prepared, and their photocatalytic degradation ability under visible light irradiation was assessed. They were characterized using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible diffuse spectroscopy. The results suggest that the presence of graphene embedded in the composite fibers prevents TiO2 particle agglomeration and aids the uniform dispersion of TiO2 on the fibers. In the photodegradation of methylene blue, a significant increase in the reaction rate was observed with TiO2–CCNF materials under visible light. This increase is due to the high migration efficiency of photoinduced electrons and the inhibition of charge–carrier recombination due to the electronic interaction between TiO2 and graphene. The TiO2–CCNF materials could be used for multiple degradation cycles without a decrease in photocatalytic activity.  相似文献   

12.
《Ceramics International》2016,42(5):5766-5771
In this work, TiO2–reduced graphene oxide (RGO) nanocomposites were successfully produced by an ultrasonication-assisted reduction process. The reduction of graphene oxide (GO) and the formation TiO2 crystals occurred simultaneously. The synthesized nanocomposite was characterized by SEM, EDX, Raman spectroscopy, FTIR, XRD, XPS, UV–vis spectroscopy, photoluminescence spectrometer and electrochemical impedance spectroscopy. As a result of the introduction of RGO, the light absorption of octahedral TiO2 was markedly improved. The photocatalytic results revealed that weight percent of RGO has substantial influence on degradation of Rhodamine B under visible light irradiation. The enhancement of the photocatalytic activity can be attributed to the enhancement of the visible-light irradiation harvesting and efficiently separation of the photogenerated charge carriers. Meanwhile, upon the RGO loading, the photoelectric conversion efficiency of TiO2–RGO nanocomposite modified electrode was also highly improved.  相似文献   

13.
《Ceramics International》2015,41(4):5903-5908
In this work, WO3-reduced graphene oxide (RGO) nanocomposite was synthesized via a simple one-pot hydrothermal method. The synthesized nanocomposite was characterized by SEM, XRD, EDX, UV–vis spectroscopy, N2 adsorption/desorption, photocurrent response, electrochemical impedance spectroscopy and Raman spectroscopy. The superior contact between WO3 and RGO sheets in the nanocomposite facilitates the photocatalytic degradation of methylene blue and evolution of oxygen. The cause of the enhanced photocatalytic performance could ascribe to the highly facilitated electron transport by the synergistic effect between WO3 and RGO sheets, as well as suppressing the electron hole pair recombination in the nanocomposite.  相似文献   

14.
《Ceramics International》2015,41(6):7471-7477
Here, novel graphene/TiO2 nanocomposite has been successfully prepared by loading flocculent-like titanate nanostructure in graphene sheets via hydrothermal method plus a subsequent annealing process. The as-obtained hybrid was characterized by X-ray diffraction, scanning electron microscopy with an energy dispersive spectroscope (EDS), Raman, and UV–vis diffuse reflectance spectra, respectively. The photoelectrochemical activities and photocatalytic degradation performance of methyl orange under the illumination of ultraviolet light were investigated, and the flocculent-like TiO2/graphene composites was found to have a superior photocatalytic activity compared to flocculent-like titanate nanostructure and commercial anatase TiO2 powder, which can be attributed to the improved light absorption and extremely efficient charge separation of the hybrid structure. The results suggest that the as-prepared flocculent-like TiO2/graphene composite is a promising photocatalyst for photoelectrochemical hydrogen production and pollution removal.  相似文献   

15.
Highly efficient Eu-TiO2/graphene composites were synthesized by a two-step method such as sol-gel and hydrothermal process. The synthesized photocatalysts were characterized by XRD, TEM, XPS, UV–vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results confirmed that anatase Eu-TiO2 nanoparticles with average 10 nm sizes were successfully deposited on two-dimensional graphene sheets. The UV–visible spectroscopy showed a red shift in the absorption edge of TiO2 due to Eu doping and graphene incorporation. Moreover, effective charge separation in Eu-TiO2/graphene composites was confirmed by PL emission spectroscopy compared to TiO2/graphene, Eu-TiO2 and pure TiO2. The photocatalytic activity for H2 evolution over prepared composites was studied under visible light irradiation (λ ≥ 400 nm). The results demonstrate that photocatalytic performance of the photocatalysts for hydrogen production increases with increasing doping concentration of Eu upto 2 at%. However, further increase in doping content above this optimum level has decreased the performance of photocatalyst. The enhanced photocatalytic performance for H2 evolution is attributed to extended visible light absorption, suppressed recombination of electron-hole pairs due to synergistic effects of Eu and graphene.  相似文献   

16.
Polyurethane acrylate (PUA)–Ag/TiO2 nanocomposites were synthesized through in situ polymerization. The well-dispersed Ag/TiO2 nanorods serve as photoinitiator. Meanwhile, the PUA–Ag/TiO2 nanocomposite films exhibit superior activity toward the photocatalytic degradation of Escherichia coli under UV light. The excellent UV curing and antibacterial activities can be ascribed to the synergistic effect of Ag and TiO2, which promotes the effective electron/hole separation and thus generates various reactive species. Thin films with these nanoparticles are more hydrophilic after UV illumination. And the antibacterial mechanism of the UV-curable PUA–Ag/TiO2 nanocomposites was proposed.  相似文献   

17.
AgI/TiO2 and Ag/TiO2 porous nanostructures were synthesized using AgNO3, KI, thioglycollic acid, and tetrabutyl orthotitanate as a precursor. AgI nanoparticles were used as seeds to initiate the nucleation of a precursor TiO2 shell, and thioglycollic acid acted as a hydrolysis inhibitor and porosity promoter. The hybridized samples were annealed at different temperatures. Porous AgI/TiO2 nanostructures were formed at low annealing temperatures (300 and 400 °C). At 600 °C, the porous Ag/TiO2 nanostructures exhibited a plasmon resonance effect. The formation mechanism of the different porous nanostructures was also investigated. Methylene blue solutions were used as wastewater to evaluate the visible-light photocatalytic activity of the samples. The porous nanostructured photocatalyst exhibited substantially high visible-light-induced photocatalytic activity for the photodegradation of methylene blue compared with pristine AgI and TiO2 nanoparticles.  相似文献   

18.
《Ceramics International》2015,41(6):7661-7668
Well-exfoliated graphene oxide sheets were initially fabricated through a modified pressurized oxidation method with powdered flake graphite as raw material. A variety of inorganic-reduced graphene oxide composites have been then successfully synthesized through a general solvothermal strategy with the graphene oxide sheets as supports, ethanol as solvent, and metal salts as precursors. After the solvothermal reactions, Ni(OH)2 nanoparticles, Fe2O3 nanorods, W18O49 nanowires, ZnO nanoparticles, and Ag nanoparticles were in situ grown on the surfaces of the graphene oxide sheets, accompanied by effective reduction of graphene oxide to reduced graphene oxide. The as-prepared products have been systematically characterized by electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, and Raman spectroscopy. The present work opens up a versatile route for preparing the reduced graphene oxide-based composites.  相似文献   

19.
Graphene film was formed on the surface of titanium dioxide nanotube (TiO2 NT) arrays through in situ electrochemical reduction of a graphene oxide dispersion by cyclic voltammetry. The residual oxygen-containing groups and other structural defects such as sp3-hybridized carbons in the electrodeposited graphene were further removed by photo-assisted reduction of the underlying TiO2 NTs, thus achieving the maximum restoration of π-conjugation in the graphene planes. Spectroscopic, electrochemical, and photoelectrochemical techniques were used to characterize the graphene films, and the use of the resulting graphene–TiO2 NT material in photocatalysis was investigated. The results showed that the graphene–TiO2 NT material exhibited a greatly improved photocatalytic activity compared with unmodified TiO2 NTs.  相似文献   

20.
In the present study, we report a simple method to synthesize silver (Ag)‐polypyrrole (PPy)/graphene (Gr) nanocomposite as efficient electrode materials for supercapacitor application. The probable interaction between Ag nanoparticles with both PPy and Gr were characterized by FTIR, UV–visible, and Raman spectroscopies. The morphological analysis confirmed that the Gr sheets are uniformly coated by PPy and in the coated Gr sheets there is the presence of Ag nanoparticles. The Ag‐PPy/Gr nanocomposite achieved the highest specific capacitance of 472 F/g at a 0.5 A/g current density. Better energy and power density also obtained for the nanocomposite. The presence of both Ag nanoparticles and Gr is the main reason for the enhancement of the electrochemical properties of the nanocomposite. Based on the superior electrochemical properties, the nanocomposite can be used for next‐generation supercapacitor electrode material. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44724.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号