首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
sdBVrs型热亚矮星是一类特殊的热亚矮星,观测显示它们同时具有p模和g模的脉动.目前这一类热亚矮星的演化起源仍然缺乏完备的解释.对氦白矮星与小质量主序星并合模型进行详细计算表明,并合模型的结果符合sdBVrs型热亚矮星的表面有效温度、重力加速度等观测特征,并且能够激发出稳定的p模和g模脉动.因此,氦白矮星与小质量主序星并合是形成sdBVrs型热亚矮星可能的渠道之一.  相似文献   

2.
3.
4.
We present 594 radial velocity measurements for 71 white dwarfs obtained during our search for binary white dwarfs and not reported elsewhere. We identify three excellent candidate binaries, which require further observations to confirm our preliminary estimates for their orbital periods, and one other good candidate. We investigate whether our data support the existence of a population of single, low-mass (≲0.5 M) white dwarfs (LMWDs). These stars are difficult to explain using standard models of stellar evolution. We find that a model with a mixed single/binary population is at least ~20 times more likely to explain our data than a pure binary population. This result depends on assumed period distributions for binary LMWDs, assumed companion masses and several other factors. Therefore, the evidence in favour of the existence of a population of single LMWDs is not sufficient, in our opinion, to firmly establish the existence of such a population, but does suggest that extended observations of LMWDs to obtain a more convincing result would be worthwhile.  相似文献   

5.
We present colour–magnitude diagrams of open clusters, located in the range  112° < l < 252°  , manifesting stellar populations in the background of clusters. Some of the populations are found to be located beyond the Perseus arm and may be the part of the Norma-Cygnus (outer) arm. The outer arm seems to be continued from   l ∼ 120°  to ∼235°. The background populations follow the downward warp of the Galactic plane around   l ∼ 240°  .  相似文献   

6.
7.
White dwarfs are the evolutionary endpoint of the low-and-medium mass stars. In the studies of white dwarfs, the mass of white dwarf is an important physical parameter. In this paper, we give an analysis about the velocity distribution of DA white dwarfs in the Sloan Digital Sky Survey (SDSS), and hope to find the relation between mass and velocity distribution of white dwarfs. We get the radial velocity and tangential velocity of every DA white dwarf according to their proper motion and spectral shift. Through analyzing the velocity distribution of DA white dwarfs, we find that the small-mass white dwarfs, which are produced from the single-star evolution channel, have a relatively large velocity dispersion.  相似文献   

8.
We compute the emission of gravitational radiation from the merging of a close white dwarf binary system. This is done for a wide range of masses and compositions of the white dwarfs, ranging from mergers involving two He white dwarfs, through mergers in which two CO white dwarfs coalesce, to mergers in which a massive ONe white dwarf is involved. In doing so we follow the evolution of the binary system using a smoothed particle hydrodynamics code. Even though the coalescence process of the white dwarfs involves considerable masses, moving at relatively high velocities with a high degree of asymmetry we find that the signature of the merger is not very strong. In fact, the most prominent feature of the coalescence is that in a relatively small time-scale (of the order of the period of the last stable orbit, typically a few minutes) the sources stop emitting gravitational waves. We also discuss the possible implications of our calculations for the detection of the coalescence within the framework of future space-borne interferometers like LISA.  相似文献   

9.
We determine the possible masses and radii of the progenitors of white dwarfs in binaries from fits to detailed stellar evolution models and use these to reconstruct the mass-transfer phase in which the white dwarf was formed. We confirm the earlier finding that in the first phase of mass transfer in the binary evolution leading to a close pair of white dwarfs, the standard common-envelope formalism (the α-formalism) equating the energy balance in the system (implicitly assuming angular momentum conservation) does not work. An algorithm equating the angular momentum balance (implicitly assuming energy conservation) can explain the observations. This conclusion is now based on 10 observed systems rather than three. With the latter algorithm (the γ-algorithm) the separation does not change much for approximately equal-mass binaries. Assuming constant efficiency in the standard α-formalism and a constant value of γ, we investigate the effect of both methods on the change in separation in general and conclude that when there is observational evidence for strong shrinkage of the orbit, the γ-algorithm also leads to this. We then extend our analysis to all close binaries with at least one white dwarf component and reconstruct the mass-transfer phases that lead to these binaries. In this way we find all possible values of the efficiency of the standard α-formalism and of γ that can explain the observed binaries for different progenitor and companion masses. We find that all observations can be explained with a single value of γ, making the γ-algorithm a useful tool to predict the outcome of common-envelope evolution. We discuss the consequences of our findings for different binary populations in the Galaxy, including massive binaries, for which the reconstruction method cannot be used.  相似文献   

10.
11.
The binary confusion noise spectrum in the Laser Interferometer Space Antenna ( LISA ) band depends strongly on the observational period and abundance of Galactic close white dwarf binaries (CWDBs). We have investigated how the number of the resolved Galactic CWDBs varies with the operation period of LISA , and found that the resolved number would typically grow by a factor of 5 when the operation period increases from 1 to 10 yr. We have also made a similar estimation for the number of CWDBs, the chirp signal of which can be measured using matched filtering analysis.  相似文献   

12.
UBVRI photometry and spectroscopic observations around the Hα line of the cataclysmic star UX UMa are presented. The analysis of the 9-year photometry shows that the out-of-eclipse brightness of the system and the depth of the eclipse changes in different time scales while the width of the eclipse remains constant. The observed features of the light curves as well as the features of the two-peaked Hα profiles were attributed to an inhomogeneity of the accretion disk. “Spiral arm” model for a fitting of the light curves of UX UMa is proposed. It reproduces well the observational data. The obtained azimuthal extent of the spiral arms is of ∼90° and their light contribution is about 17–30of the total V flux of the disk. The obtained two dense structures at the outer disk covering partially the inner hot disk and the white dwarf at orbital phases ∼0.7 and ∼0.2 is in agreement with the predictions of the theoretical computations.  相似文献   

13.
Using Eggleton's stellar evolution code, we carry out 150 runs of Population I binary evolution calculations with the initial primary mass between 1 and 8 M, the initial mass ratio     between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass M 1i of the primary, the initial mass ratio q i and the radius of the primary at the onset of RLOF. We also find that a carbon–oxygen white dwarf with mass as low as 0.33 M may be formed if the initial mass of the primary is around 2.5 M.  相似文献   

14.
15.
We present Hubble Space Telescope ( HST )/Wide Field Planetary Camera 2 (WFPC2), Galaxy Evolution Explorer ( GALEX ) and Chandra observations of the position of the Type Ia supernova 2007sr in the Antennae galaxy, taken before the explosion. No source is found in any of the observations, allowing us to put interesting constraints on the progenitor luminosity. In total there is about 450 ks of Chandra data, spread over seven different observations. Limiting magnitudes of far-ultraviolet (FUV) (23.7 AB mag), near-ultraviolet (NUV) (23.8 AB mag), F555W (26.5 Vega mag) and F814W (24.5–25 Vega mag) are derived. The distance to the Antennae galaxy is surprisingly poorly known, with almost a factor of 2 difference between the latest distance based on the tip of the red giant branch (13.3 Mpc) and the distance derived from the 2007sr light curve (25 Mpc). Using these distances we derive limits on absolute optical and UV magnitudes of any progenitor but these are still above the brightest (symbiotic) proposed progenitors. From the Chandra data a 3σ upper limit to the X-ray luminosity of  0.5–8.0 × 1037 erg s−1  in the 0.3–1 keV range is found. This is below the X-ray luminosity of the potential progenitor of the Type Ia supernova 2007on that we recently discovered and for which we report a corrected X-ray luminosity. If that progenitor is confirmed it suggests the two supernovae have different progenitors. The X-ray limit is comparable to the brightest supersoft X-ray sources in the Galaxy, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) and significantly below the luminosities of the brightest supersoft and quasi-soft X-ray sources found in nearby galaxies, ruling out such sources as progenitors of this Type Ia supernova.  相似文献   

16.
17.
Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25 and a degree of contact factor f=9.4%(±0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair, results in a massive third body with M 3=1.73M and P 3=87.0 yr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75 yr and its mass is about 0.278M . Both of the cases suggest the presence of an unseen third component in the system.  相似文献   

18.
19.
20.
This paper presents charge-couple device (CCD) photometric observations for the eclipsing binary AW UMa. The V-band light curve in 2007 was analyzed using the 2003 version of the Wilson–Devinney code. It is confirmed that AW UMa is a total eclipsing binary with a higher degree of contact f=80.2% and a lower mass ratio of q=0.076. From the (OC) curve, the orbital period shows a continuous period decrease at a rate of dP/dt=−2.05×10−7 d yr−1. The long-term period decrease suggested that AW UMa is undergoing the mass transfer from the primary component to the secondary one, accompanied by angular momentum loss due to mass outflow L 2. Weak evidence indicates that there exists a cyclic variation with a period of 17.6 yr and a small amplitude of A=0. d 0019, which may be attributed to the light-time effect via the third body. If the existence of an additional body is true, it may remove a great amount of angular momentum from the central system. For this kind of contact binary, as the orbital period decreases, the shrinking of the inner and outer critical Roche lobes will cause the contact degree f to increase. Finally, this kind of binary will merge into a single rapid-rotation star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号