首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The microstructure of a duplex stainless steel slab 1.4362 produced by continuous casting has been investigated by optical microscopy, scanning electron microscopy, EBSD and EDS. The slab showed different macrostructures through the thickness. The macrostructure can be divided into 3 types: fine equiaxed, columnar and coarse equiaxed grains. In all three regions, the volume fraction of each phase austenite and delta‐ferrite is close to 50% and the hardness is very similar for both. The austenite has Kurdjumov‐Sachs or Nishiyama‐Wassermann relationship with the delta‐ferrite. The slab does not show a strong segregation profile through the thickness. The delta‐ferrite is enriched in Cr and Mo, while austenite is enriched in Ni and Mn.  相似文献   

2.
 高硅奥氏体不锈钢由于高含量硅元素的加入使其具有优异的耐高温腐蚀性能和较低的成本,在制酸行业有着潜在的应用价值。然而,该合金中高含量硅元素的加入会促进凝固过程中溶质再分配,进而造成显著的元素偏析,最终导致合金内部产生枝晶组织和大量的有害相。对铸锭组织进行均匀化处理能够有效消除枝晶与元素偏析,促进析出相回溶和枝晶消融,从而改善材料的热塑性,有效应对热变形开裂问题。因此,采用金相显微镜(OM)、扫描电镜能谱分析(SEM/EDS)、电子探针(EPMA)、JMatPro软件计算等方法,研究了实验室条件下制备的5%Si高硅奥氏体不锈钢铸锭的显微组织和元素分布状态,通过残余偏析指数、扩散动力学计算并结合均匀化处理试验验证,最终确定了5%Si高硅奥氏体不锈钢合理的均匀化处理工艺。结果表明,5%Si高硅奥氏体不锈钢凝固过程中钼元素偏析最为严重,通过残余偏析指数模型计算得到的均匀化动力学方程可用来指导该成分合金的均匀化处理工艺;5%Si高硅奥氏体不锈钢经过1 150 ℃×12 h均匀化处理后,铸锭内枝晶消融,元素偏析基本消除,析出相与铁素体回溶到基体中,合金转变为全奥氏体组织,热塑性得到改善;当加热温度达到1 250 ℃时,合金出现过烧现象,晶界开始熔化。  相似文献   

3.
低合金钢焊接粗晶区连续冷却铁素体相变规律   总被引:1,自引:0,他引:1  
 利用焊接粗晶区连续冷却淬火方法,对比分析了钛处理钢和普通C Mn钢焊接粗晶区连续冷却不同阶段的相变组织,研究了铁素体相变规律。结果表明,C Mn钢焊接粗晶区主要为晶界铁素体+魏氏组织铁素体;钛处理钢焊接粗晶区主要为晶界铁素体+魏氏组织铁素体+晶内铁素体组织。在钛处理钢中,晶界铁素体、魏氏组织铁素体和晶内铁素体的相变开始温度相同,但各自长大的动力学条件不同。当晶内铁素体和魏氏组织铁素体竞争发生相变时,晶内铁素体在晶内弥散分布氧化物夹杂上的非均质形核抑制了魏氏组织铁素体向晶内的长大。  相似文献   

4.
为提高铁酸锌的催化效率,可采用增加比表面积、优化表面形貌的方法,也可将铁酸锌与其他材料结合,获得更为高效实用的光催化剂。文章对铁酸锌复合改性方式和不同形貌铁酸锌的制备方法进行了分析,并对改性后颗粒粒径不均问题和未来研究方向做了讨论和展望。将铁酸锌与其他物质复合,制备出活性高且性能稳定的复合光催化剂,可提升复合材料的催化能力,缓解铁酸锌催化活性低的问题。制备不同形貌的铁酸锌,可增加铁酸锌的比表面积,提高铁酸锌催化效率。  相似文献   

5.
The Effect of A1 and Ti treatment on non-metallic inclusions and microstructures of coarse-grain HAZ in HSLA stee1 was investigated in this paper based on experiments and thermodynamic calculations.The results showed that the inclusions in A1 treated steel were mainly aluminum oxides and titanium nitrides which could not promote the formation of acicular ferrite microstructures.Microstructure of coarse-grain HAZ in A1 treated steels consists of heavy grain boundary ferrite and ferrite side plate.The inclusions in Ti treated steel were A1,Ti,Mg,Ca composite oxides with size in the range of 0.5-3μm and titanium nitrides with size less than 0.3μm.Ti composite oxide could promote the formation of acicular ferrite and microstructures of coarse-grain HAZ in Ti treated steel consists of grain boundary ferrite,small amounts of ferrite side plate and large amounts of intragranular acicular ferrite.The size of grain boundaries ferrite was increased and the amount of ferrite side plate was decreased with the increase of soaking time at the peak temperature.The amount of grain boundary ferrite and the size of acicular ferrite were also increased with the increase of cooling rate during ferrite phase formation.  相似文献   

6.
Growth kinetics of proeutectoid ferrite, including grain boundary face nucleated ferrite, grain boundary edge nucleated ferrite allotriomorph and intragranular ferrite idiomorph, were experimentally measured in an Fe- 0.09C-1.5Mn-0.2Si steel and compared with theoretical calculation in local equilibrium and paraequilibrium modes. Grain boundary edge nucleated ferrite exhibited larger growth rate than grain boundary face nucleated ferrite and in- tragranular ferrite idiomorph. Experimental kinetics of proeutectoid ferrite was within the window defined by the lo- cal equilibrium and paraequilibrium limits. A transition of growth kinetics from paraequilibrium to local equilibrium was observed in the temperature range of 650--750 ℃, which can be explained in terms of solute drag.  相似文献   

7.
Morphology of bainite and Widmanstätten ferrite in various steels has been investigated by means of microstructural and surface relief observations. It was shown that upper and lower bainite should be classified by ferrite morphology,i.e., lathlike or platelike, and that the morphology of cementite precipitation cannot be the index for the classification. Widmanstätten ferrite formed in the upper C-nose where ferrite grain-boundary allotriomorphs nucleate exhibits quite similar appearance with bainitic ferrite that forms in the lower C-nose of bainitic reaction. The only difference between them exists in the fact that Widmanstätten ferrite laths grow in the temperature range where primary ferrite forms and often terminate at a grain boundary ferrite but that bainitic ferrite has its own C-curve at temperatures belowB s and nucleates directly at an austenite grain boundary. The mechanisms for their formations are discussed.  相似文献   

8.
铁酸钙的形态对烧结矿抗断裂性能的影响   总被引:6,自引:1,他引:5  
采用维氏压痕试验法,研究了含有不同形态铁酸钙的烧结矿中裂纹的萌生与扩展,考察了铁酸钙的形态对烧结矿抗断裂性能的影响.结果表明:铁酸钙尺寸较大时,烧结矿的抗断裂性能由铁酸钙本体的断裂韧性决定,它的尺寸较小时由其形态决定;铁酸钙的晶粒越细,致使裂纹萌生的临界载荷越大,烧结矿的抗断裂性能越好.烧结生产中生成细晶粒铁酸钙有利于提高烧结矿的抗断裂性能.  相似文献   

9.
通过实验室模拟试验,研究了高氮钒钢的金相组织和形变诱导铁素体体积分数,分析了钒对高氮钒钢变形诱导相变的影响.试验结果表明,钒的加入促进了形变诱导铁素体相变,细化了铁素体晶粒,提高了形变诱导铁素体体积分数.  相似文献   

10.
The deformation behaviors of retained ferrite and transformed ferrite in a dual-phase steel were studied by observing slip lines, strain development, and inhomogeneity of strain in each phase. The retained ferrite was more deformable and had a lower degree of the strain inhomogeneity than the transformed ferrite. The degrees of strain inhomogeneity of both ferrites became larger with increasing tensile strain. Variations in the distribution, amount, and morphology of martensite caused the difference in the deformation behavior between the two types of ferrite by changing the degree of constraint for ferrite deformation.  相似文献   

11.
王倩  杨忠民  吴春京 《钢铁》2008,43(12):75-0
 通过对普碳钢Q235在Gleeble1500热模拟机上变形后的微观组织分析,研究了组织中形变诱导的铁素体在变形后保温阶段转变为奥氏体的逆相变现象;并利用背散射电子衍射(EBSD)技术分析了晶粒取向变化。结果表明,在变形后的保温过程中,形变诱导的铁素体先逆相变为奥氏体,同时伴随着诱导铁素体晶粒的长大;然后随着变形后保温时间的延长,逆相变后的奥氏体由马氏体相变逐渐过渡到铁素体的平衡转变,相应地铁素体由具有少量亚结构的形变诱导铁素体逐渐转变为具有较多亚结构的先共析铁素体。  相似文献   

12.
Scanning transmission electron microscopy (STEM) was conducted on welds exhibiting a variety of skeletal, or vermicular ferrite morphologies in addition to one lathy ferrite morphology. These ferrite morphologies result from primary ferrite solidification followed by a solid state transformation upon cooling. During cooling, a large fraction of the ferrite transforms to austenite leaving a variety of ferrite morphologies. Comparison of composition profiles and alloy partitioning showed both the skeletal and lathy ferrite structures result from a diffusion controlled solid state transformation. However, the overall measured composition profiles of the weld structure are a result of partitioning during both solidification and the subsequent solid state transformation.  相似文献   

13.
Ti、Zr的复合氧化物可以有效诱导针状铁素体形核,从而细化晶粒。为了研究Ti–Zr处理钢中针状铁素体转变机理,使用25 kg真空感应炉中熔炼试验所需钢种,向低合金钢中添加了质量分数为0.038%钛和0.008%锆。利用高温激光共聚焦显微镜原位观察了奥氏体化温度对针状铁素体转变行为的变化,使用扫描电镜观察了Ti–Zr处理钢种的夹杂物成分和针状铁素体在夹杂物表面形核,使用光学显微镜观察不同奥氏体化温度下的微观组织变化差异。结果表明,随着奥氏体化温度从1250 ℃增加至1400 ℃,奥氏体晶粒尺寸从125.6 μm 增加至279.8 μm,针状铁素体开始转变温度和侧板条铁素体开始转变温度先增加,在1350 ℃条件下达到最大值,后又降低,针状铁素体的体积分数由39.6%增加至83.6%;Ti–Zr处理钢中核心为Zr–Ti–O,外部为Al–Ti–Zr–O的氧化物为核心表面析出MnS的复合氧化物主要集中在1.5~3 μm,可以有效促进针状铁素体形核,贫Mn区和夹杂物与铁素体之间的良好晶格关系为该型夹杂物能够促进针状铁素体形核机理。奥氏体晶粒尺寸的增加导致多边形铁素形核位点的减少和针状铁素体的形核空间的增加,钛锆复合处理形成大量的有效诱发针状铁素体形核的夹杂物,这共同导致了针状铁素体体积分数增加。   相似文献   

14.
姚浩  张立峰  任强  任英  杨文 《钢铁》2021,56(11):96-103
 大线能量焊接技术在低合金钢中的广泛使用降低了低合金钢的低温韧性,向低合金钢中添加适量的钛、锆元素可以促进针状铁素体形核,细化晶粒组织从而提高低合金钢的低温韧性。为了研究Ti-Zr处理钢中针状铁素体转变机理,使用25 kg真空感应炉中熔炼试验所需钢种,向低合金钢中添加了0.04%钛元素和0.014%锆元素;利用高温激光共聚焦显微镜原位观察了冷却速率对针状铁素体转变行为的变化;使用扫描电镜观察了Ti-Zr处理钢中的夹杂物成分和针状铁素体在夹杂物表面形核,使用光学显微镜观察不同冷速下的微观组织变化差异。试验发现,随着冷却速率从1增加至10 ℃/s,侧板铁素体的开始转变温度从770.2降低至632.4 ℃,针状铁素体的开始转变温度从731.5降低至612.6 ℃,针状铁素体的面积分数从47.91%增加至68.04%,针状铁素体与侧板铁素体的面积分数比值从1.34增加至3.54,针状铁素体与侧板铁素体的开始转变温度与结束转变温度差的比值从0.52增加至0.83,针状铁素体与侧板铁素体的面积分数之比与其转变温度区间之比存在正比例关系;不同冷却速率下,Ti-Zr处理钢中的主要夹杂物为ZrO2-TiN-MnS,并且ZrO2-TiN-MnS夹杂物可以有效促进针状铁素体形核;一方面是因为生成的贫锰区增加了铁素体转变驱动功;另一方面是因为ZrO2-TiN-MnS夹杂物与铁素体有良好的晶格匹配关系降低了针状铁素体在夹杂物表面形核的界面能。  相似文献   

15.
 In order to ensure the safety of long-distance oil and natural gas transmission pipeline installed in seismic and/or permafrost region, high strength pipeline steel with excellent deformability has been developed. The ferrite and bainite dual phase pipeline steel is a very important kind of high deformability pipeline steel. Polygonal ferrite is a key microstructure in ferrite and bainite dual phase deformability pipeline steel. Ferrite evolution during isothermal process at 700 ℃ after 50% deformation at 800 ℃ was conducted by using a Gleeble-3800 thermal simulator, and microstructure was characterized by using an optical microscope, a scanning electron microscope and a transmission electron microscope. There are two types of ferrite, ferrite with high density dislocation and ferrite with a little dislocation. There is about 7% (volume percent) deformation induced ferrite (DIF) for compression of 50% at 800 ℃ and strain rate of 1 s-1. During the isothermal process at 700 ℃, with the holding time increasing, ferrite volume percent, ferrite grain number and average ferrite grain size increase. As the holding time is prolonged, dislocation recovery occurs in DIF. There are secondary phases in ferrite when the holding time is too long, and secondary phases and dislocation formation in dislocation pinning.  相似文献   

16.
The CCT behaviors of two bearing Nb polygonal ferrite-bainite high strength and high-deformability pipeline steels were studied in undeformed condition, The static CCT curves were constructed. The static CCT curves, microstructures and microhardness of two experimental steels were compared. It was found that microstructures of these steels contain polygonal ferrite, pearlite, bainite as cooling rate from 0.0278 to 42.5�桤s-1; Addition of Nb in the steel retards polygonal ferrite and granular bainite transformation, suppresses ferrite growth and refine ferrite grain, makes transformation line of bainite right shift, narrows the range of cooling rate of ferrite transformation, raises start temperature of ferrite and banite transformation; ferrite transformation zone is narrowed and the bainite transformation zone is expanded with increasing of Nb.  相似文献   

17.
Nanocrystalline ferrite formation by ball milling in Fe-0.89C spheroidite steel and its annealing behavior have been studied through microstructure observations and microhardness measurements. It was found that at the early stage of ball milling, the dislocation density increases and dislocation cells form due to plastic deformation. At the middle stage of ball milling, a layered nanocrystalline structure forms near the surface of the powder by localized severe deformation. The microhardness of nanocrystalline ferrite (10 GPa) is much higher than that of work-hardened ferrite (4 GPa). Together with the nanocrystallization of ferrite, the dissolution of cementite was observed. At the final stage of ball milling, equiaxed nanocrystalline ferrite forms from layered nanocrystalline ferrite by increasing the local misorientation. By annealing the milled powders, recrystallization was observed in the workhardened ferrite region, while in the nanocrystalline ferrite region, a slow grain growth was observed instead of recrystallization.  相似文献   

18.
 The transformation behavior and microstructural characteristics of a low carbon high Nb-bearing microalloyed pipeline steel have been investigated by deformation dilatometry and microstructure observation. The continuous cooling transformation curves (CCT) of the tested steel was constructed. High Nb content and deformation enhancing the formation of acicular ferrite; the microstructures are range from PF, QF to AF with increasing cooling rates from 0.5 to 50℃/s and dominated by acicular ferrite in a broadened cooling rate higher than 5℃/s. The chaotic microstructure consists of non-equiaxed ferrite and interwoven ferrite laths distributed high density dislocations and sununits. The results of isothermal holding show that acicular ferrite microstructure is formed in region of 550-600℃. With the holding time or temperature increased, some low misorientations boundaries change to high misotrentationn as dislocations moving and grain boundaries coarsening.  相似文献   

19.
高强度低合金钢焊缝金属的组织及其影响因素   总被引:1,自引:0,他引:1  
HSLA钢焊缝金属组织主要是由先共析铁素体、侧板条铁素体和针状铁素体组成,针状铁素体具有良好的韧性和强度配比,是HSLA钢焊缝金属最希望得到的组织。从合金元素、焊接参数和夹杂物三个方面对针状铁素体组织的形成进行阐述,以期为HSLA钢的使用及配套焊丝的开发等相关研究提供一定的借鉴。  相似文献   

20.
Electro-slag welding with heat input of 530kJ/cm was applied to 60mm thick shipbuilding plate EH40, and microstructure and mechanical properties of the weld joint were characterized. Different regions such as heat affected zone, fusion zone, weld metal and base metal are found across the weld joint by microstructure analysis. A narrow coarse grain heat affected zone consisting of acicular ferrite, polygonal ferrite and grain boundary ferrite is found, width of which is less than 1mm. Acicular ferrite (?? 10??m) and grain boundary ferrite is observed at weld metal, while fusion zone have a complex structure of acicular ferrite, grain boundary ferrite and ferrite side plate. Mechanical property tests show that the absorbed energy of WM, FL and CGHAZ at -20?? during Charpy impact test is more than 60J, no evident softening phenomenon occurred at heat affected zone, and other properties met the requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号