首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
    
Attitude is the important parameter for active debris removal and collision avoidance. This paper deduced the spin axis orientation and spin period of the rocket body, CZ-3B R/B (NORAD ID 38253), using the satellite laser ranging and light curve data measured with single-photon detector at Graz station. The epoch method and LC & SLR residuals fitting were combined to determine these values. The derived right ascension angle was around 220°, the declination angle was near 64° and the sidereal period was calculated to be 117.724 s, for 2017-07-03. The results derived from the two distinct methods were mutually validated. Rocket bodies are a major contributor to space debris and this work provides a reference for attitude determination and attitude modelling.  相似文献   

2.
3.
    
This paper investigates the motion control system of an optical telescope system used for precision satellite tracking and ranging applications. The system uses direct-drive permanent magnet synchronous motors (PMSMs) for high precision positioning. To overcome the performance limitations due to system dynamics and position dependent plant variations, a disturbance observer based control system is utilized. This paper contributes the detailed analysis, design and implementation of such an advanced control concept for the performance improvement of precision satellite tracking systems. Satellite tracking experiments are conducted to verify the performance of the proposed system. Utilizing the proposed control concept, the RMS servo error is reduced by a factor of 3.8 to well below the arcsecond range, achieving seeing limited tracking.  相似文献   

4.
We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5–50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations.  相似文献   

5.
    
In order to test laser ranging possibilities to space debris objects, the Satellite Laser Ranging (SLR) Station Graz installed a frequency doubled Nd:YAG pulse laser with a 1 kHz repetition rate, a pulse width of 10 ns, and a pulse energy of 25 mJ at 532 nm (on loan from German Aerospace Center Stuttgart – DLR). We developed and built low-noise single-photon detection units to enable laser ranging to targets with inaccurate orbit predictions, and adapted our standard SLR software to include a few hundred space debris targets. With this configuration, we successfully tracked – within 13 early-evening sessions of each about 1.5 h – 85 passes of 43 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from >15 m2 down to <0.3 m2, and measured their distances with an average precision of about 0.7 m RMS.  相似文献   

6.
The T2L2 (Time Transfer by Laser Link) project, developed by CNES and OCA will permit the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle of the experiment derives from Satellite Laser Ranging (SLR) technology with dedicated space equipment. T2L2 was accepted in 2005 to be on board the Jason2 altimetry satellite. The payload consists of both event timer and photo detection modules. The system uses the ultra-stable quartz oscillator of DORIS as on-board reference clock on one hand, and the Laser Reflector Array, making T2L2 a real two-way time transfer system on the other hand. The expected time stability of the T2L2 instrument (detection and timing), referenced by the DORIS oscillator and including all internal error sources should be at the level of 10–12 ps at 1 s and <1 ps at 1000 s. The metrological specifications of T2L2 should permit to maintain a precision of 1 to a few ps when measuring the phase of a clock during around 1000 seconds.  相似文献   

7.
    
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i?20–30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200?y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.  相似文献   

8.
    
Earlier studies have shown that an orbit prediction accuracy of 20 arc sec ground station pointing error for 1–2 day predictions was achievable for low Earth orbit (LEO) debris using two passes of debris laser ranging (DLR) data from a single station, separated by about 24 h. The accuracy was determined by comparing the predicted orbits with subsequent tracking data from the same station. This accuracy statement might be over-optimistic for other parts of orbit far away from the station. This paper presents the achievable orbit prediction accuracy using satellite laser ranging (SLR) data of Starlette and Larets under a similar data scenario as that of DLR. The SLR data is corrupted with random errors of 1 m standard deviation so that its accuracy is similar to that of DLR data. The accurate ILRS Consolidated Prediction Format orbits are used as reference to compute the orbit prediction errors. The study demonstrates that accuracy of 20 arc sec for 1–2 day predictions is achievable.  相似文献   

9.
This paper summarizes two new satellite impact experiments. The objective of the experiments was to investigate the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low-velocity of 1.5 km/s using a 40-g aluminum alloy sphere. The second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-g aluminum alloy sphere. The target satellites were 15 cm × 15 cm × 15 cm in size and 800 g in mass. The ratios of impact energy to target mass for the two experiments were approximately the same. The target satellites were completely fragmented in both experiments, although there were some differences in the characteristics of the fragments. The projectile of the low-velocity impact experiment was partially fragmented while the projectile of the hyper-velocity impact experiment was completely fragmented beyond recognition. To date, approximately 1500 fragments from each impact experiment have been collected for detailed analysis. Each piece has been weighed, measured, and analyzed based on the analytic method used in the NASA Standard Breakup Model (2000 revision). These fragments account for about 95% of the target mass for both impact experiments. Preliminary analysis results will be presented in this paper.  相似文献   

10.
This paper demonstrates active space debris removal using spaceborne laser systems. The laser beam and the surface of the target are discretised into multiple rays and finite elements, respectively, for laser-target interaction modelling, in which the laser ablation process is investigated. A high-fidelity attitude/orbit propagator tool is developed to account for both the linear impulse and angular impulse induced by the laser engagement and other perturbations. The laser system is activated only when three switch criteria are satisfied. In numerical simulations, laser pulses from international space station are generated to deorbit a 3U CubeSat with initially tumbling modes. The results validate the effectiveness of deorbiting tumbling CubeSats using spaceborne laser engagement, with the perigee height lowered by approximately 2.4km in around 30min after 2h propagation. It is also found that the laser engagement becomes more effective for an initially faster rotating object.  相似文献   

11.
Satellite Laser Ranging (SLR) stations measure distance to the satellites equipped with Corner Cube Reflectors (CCRs). These range measurements contain information about spin parameters of the spacecraft. In this paper we present results of spin period determination of two passive satellites from SLR data only: 10 years of LAGEOS-1 (10426 values), and 15 years of LAGEOS-2 (15580 values). The measurements have been made by standard 10 Hz SLR systems and the first 2 kHz SLR system from Graz (Austria). The obtained data allowed calculation of the initial spin period of the satellites: 0.61 s for LAGEOS-1 and 0.906 s for LAGEOS-2. Long time series of the spin period values show that the satellite’s slowing down rate is not constant but is oscillating with a period of 846 days for LAGEOS-1 and 578 days for LAGEOS-2. The results presented here definitely prove that the SLR is a very efficient technique able to measure spin period of the geodetic satellites.  相似文献   

12.
For the development of a telescope that is capable of precisely tracking satellites and high-speed operation such as satellite laser ranging, a special method of telescope operation is required. This study aims to propose a new telescope operation method and system configuration for the independent development of a mount and an operation system which includes the host computer. Considering that the tracking of a satellite is performed in real time, communication and synchronization between the two independent subsystems are important. Therefore, this study applied the concept of time synchronization, which is used in various fields of industry, to the communication between the command computer and the mount. In this case, communication delays do not need to be considered in general, and it is possible to cope with data loss. Above all, when the mount is replaced in the future, only the general communication interface needs to be modified, and thus, it is not limited by replacement in terms of the overall system management. The performance of the telescope operation method developed in this study was verified by applying the method to the first mobile SLR system in Korea. This study is significant in that it proposed a new operation method and system configuration, to which the concept of time synchronization was applied, for the observation system that requires an optical telescope.  相似文献   

13.
根据带电粒子云从破碎点开始向空间扩散过程中粒子云密度和形状的变化规律,以几何形状和起主要作用的因素为特征,定义了球形、椭球形、绳形、螺旋线形、全方位弥漫直至球壳形6个演变阶段.论述了在各个阶段的主要特征和对演变过程起主要作用的因素.分析了在各个阶段电磁场对带电粒子的摄动影响,比较了带电粒子云与不带电粒子云在演化过程上的差异.在球形阶段起主要作用的是分离速度,带电碎片之间的排斥力加快了碎片扩散的速度.从椭球形阶段到球壳形阶段,带电粒子和不带电粒子的演化规律基本一致.带电粒子的演化过程加快或减慢取决于粒子带正电或带负电.将电场摄动力等效于改变地球引力的大小,罗列了阶段转换标志点时刻的计算公式.利用计算机仿真的方法,给出了各个阶段不带电碎片云和带电碎片云分布示意图,验证了演变过程阶段划分和电磁场摄动分析的合理性.  相似文献   

14.
This study aims to investigate solar radiation pressure acting on the spherical geodetic satellites, Ajisai, LAGEOS-1, and LAGEOS-2. The solar radiation pressure coefficients (CR) are derived in two independent ways: (a) through precise orbit determination (POD) using satellite laser ranging (SLR) data, and (b) through modeling using the optical properties of the satellite surface material. The average CR value of Ajisai (1.039), as calculated from the time series of CR POD estimates every 15?days, is consistently smaller than those of LAGEOS-1 (1.140) and LAGEOS-2 (1.103). This difference can be explained by the fact that the surface of Ajisai is mostly covered by mirrors. The Ajisai CR values estimated by POD show remarkable semi-annual variation, which disagrees with the results of a previous study (Sengoku et al., 1995) predicting that the CR of Ajisai varies almost annually. We attribute this semi-annual variation to two physical reasons: the non-spherical additional cross-sectional area due to the “attached fitting ring” and the low reflectivity of the surface material in the polar regions. Furthermore, the solar radiation pressure acting on Ajisai varies annually in a direction perpendicular to the sun-satellite vector. Finally, the two independent CR values of Ajisai agree more when we assume a total solar irradiance of 1361?W/m2, whereas the value 1367?W/m2 has been commonly used in POD.  相似文献   

15.
    
Satellite gravity field missions such as CHAMP, GRACE and GOCE are designed as low Earth orbiting spacecraft (LEO) with orbit heights of about 250–500 km. The challenging mission objectives require a very precise knowledge of the satellite orbit position in space. For these missions precise orbit information is typically provided by GPS satellite-to-satellite tracking (SST) observations supported by satellite laser ranging (SLR).  相似文献   

16.
The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014–2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10?Hz repetition rate, a pulse width of 3–5?ns and a pulse energy of 450?mJ for green (532?nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS).Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 – January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10?s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.  相似文献   

17.
18.
    
TEC values obtained from TOPEX satellite were compared with the International Reference Ionosphere (IRI) 2001 model estimates. The present work also shows results of the IRI model with the option of a new topside electron density distribution (NeQuick model). TOPEX TEC measurements, which include years of high and middle to low solar activity (2000 and 2004), were analyzed by binning the region covered by the satellite (±66°) every five degrees of modip. In general, there is good agreement between IRI predictions and Topex measurements. Cases with large disagreements are observed at low and high latitudes during high solar activity. Comparing the model predictions using the default IRI2001 model and the NeQuick topside option show that the default IRI 2001 version represents the observed data in a more realistic way, but appears to be less reliable at high and low latitudes in some cases.  相似文献   

19.
    
The Caspian Sea has displayed considerable fluctuations in its water level during the past century. Knowledge of such fluctuation is vital for understanding the local hydrological cycles, climate of the region, and construction activities within the sea and along its shorelines. This study established a point-wise satellite altimetry approach to monitor the fluctuations of the Caspian Sea using a complete dataset of TOPEX/Poseidon for the period 1993 to the middle of 2002, and its follow-on Jason-1 for the period 2002 to August 2009. Therefore, 280 virtual time-series were constructed to monitor the fluctuations. The least squares spectral analysis (LSSA) method is, then employed to find the most significant frequencies of the time-series, while the statistical method of principle component analysis (PCA) is applied to extract the dominant variability of level variations. The study also used the observations of TOPEX/Poseidon and Jason-1 over the Volga River along with 5 years of Volga’s water discharge to study its influence on the Caspian Sea level changes. The LSSA results indicate that the lunar semidiurnal (M2) and the Sun semidiurnal (S2) frequencies are the main tidal frequencies of the Caspian Sea with the mean amplitude of 4.2 and 2.8 cm, respectively. A statistically significant long-term frequency (12.5-years period) is also found from altimetry and tide gauge observations. A phase lag, related to the inter-annual frequencies of the Volga River was detected from the point-wise time-series showing level propagation from the northwest to the southeast of the sea. The cross-correlation between the power spectrum of Volga and that of the northern-most, middle, and southern-most points within the Caspian Sea were respectively 0.63, 0.51 and 0.4 of zero-lag correlation, corroborating the influence of the Volga River. The result of PCA also shows that different parts of the Caspian Sea exhibit different amplitudes of level variations, indicating that the point-wise approach, when employing all available satellite measurements could be a suitable method for a preliminary monitoring of this inland water resource as it gives accurate local fluctuations.  相似文献   

20.
Spacecraft that are launched to operate in Earth orbit are susceptible to impacts by meteoroids and pieces of orbital debris (MMOD). The effect of a MMOD particle impact on a spacecraft depends on where the impact occurs, the size, composition, and speed of the impacting object, the function of the impacted system. In order to perform a risk analysis for a particular spacecraft under a specific mission profile, it is important to know whether or not the impacting particle (or its remnants) will exit the rear of an impacted spacecraft wall. A variety of different ballistic limit equations (BLEs) have been developed for many different types of structural wall configurations. BLEs can be used to optimize the design of spacecraft wall parameters so that the resulting configuration is able to withstand the anticipated variety of on-orbit high-speed impact scenarios. While the level of effort exerted in studying the response of metallic multi-wall systems to high speed particle impact is quite substantial, the extent of the effort to study composite material and composite structural systems under similar impact conditions has been much more limited. This paper presents an overview of the activities performed to assess the resiliency of composite structures and materials under high speed projectile impact. The activities reviewed will be those that have been aimed at increasing the level of protection afforded to spacecraft operating in the MMOD environment, and more specifically, on those activities performed to mitigate the mechanical and structural effects of an MMOD impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号