首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Attitude is the important parameter for active debris removal and collision avoidance. This paper deduced the spin axis orientation and spin period of the rocket body, CZ-3B R/B (NORAD ID 38253), using the satellite laser ranging and light curve data measured with single-photon detector at Graz station. The epoch method and LC & SLR residuals fitting were combined to determine these values. The derived right ascension angle was around 220°, the declination angle was near 64° and the sidereal period was calculated to be 117.724 s, for 2017-07-03. The results derived from the two distinct methods were mutually validated. Rocket bodies are a major contributor to space debris and this work provides a reference for attitude determination and attitude modelling.  相似文献   

3.
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i?20–30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200?y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.  相似文献   

4.
We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5–50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations.  相似文献   

5.
The Caspian Sea has displayed considerable fluctuations in its water level during the past century. Knowledge of such fluctuation is vital for understanding the local hydrological cycles, climate of the region, and construction activities within the sea and along its shorelines. This study established a point-wise satellite altimetry approach to monitor the fluctuations of the Caspian Sea using a complete dataset of TOPEX/Poseidon for the period 1993 to the middle of 2002, and its follow-on Jason-1 for the period 2002 to August 2009. Therefore, 280 virtual time-series were constructed to monitor the fluctuations. The least squares spectral analysis (LSSA) method is, then employed to find the most significant frequencies of the time-series, while the statistical method of principle component analysis (PCA) is applied to extract the dominant variability of level variations. The study also used the observations of TOPEX/Poseidon and Jason-1 over the Volga River along with 5 years of Volga’s water discharge to study its influence on the Caspian Sea level changes. The LSSA results indicate that the lunar semidiurnal (M2) and the Sun semidiurnal (S2) frequencies are the main tidal frequencies of the Caspian Sea with the mean amplitude of 4.2 and 2.8 cm, respectively. A statistically significant long-term frequency (12.5-years period) is also found from altimetry and tide gauge observations. A phase lag, related to the inter-annual frequencies of the Volga River was detected from the point-wise time-series showing level propagation from the northwest to the southeast of the sea. The cross-correlation between the power spectrum of Volga and that of the northern-most, middle, and southern-most points within the Caspian Sea were respectively 0.63, 0.51 and 0.4 of zero-lag correlation, corroborating the influence of the Volga River. The result of PCA also shows that different parts of the Caspian Sea exhibit different amplitudes of level variations, indicating that the point-wise approach, when employing all available satellite measurements could be a suitable method for a preliminary monitoring of this inland water resource as it gives accurate local fluctuations.  相似文献   

6.
This paper demonstrates active space debris removal using spaceborne laser systems. The laser beam and the surface of the target are discretised into multiple rays and finite elements, respectively, for laser-target interaction modelling, in which the laser ablation process is investigated. A high-fidelity attitude/orbit propagator tool is developed to account for both the linear impulse and angular impulse induced by the laser engagement and other perturbations. The laser system is activated only when three switch criteria are satisfied. In numerical simulations, laser pulses from international space station are generated to deorbit a 3U CubeSat with initially tumbling modes. The results validate the effectiveness of deorbiting tumbling CubeSats using spaceborne laser engagement, with the perigee height lowered by approximately 2.4km in around 30min after 2h propagation. It is also found that the laser engagement becomes more effective for an initially faster rotating object.  相似文献   

7.
8.
9.
The T2L2 (Time Transfer by Laser Link) project, developed by CNES and OCA will permit the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle of the experiment derives from Satellite Laser Ranging (SLR) technology with dedicated space equipment. T2L2 was accepted in 2005 to be on board the Jason2 altimetry satellite. The payload consists of both event timer and photo detection modules. The system uses the ultra-stable quartz oscillator of DORIS as on-board reference clock on one hand, and the Laser Reflector Array, making T2L2 a real two-way time transfer system on the other hand. The expected time stability of the T2L2 instrument (detection and timing), referenced by the DORIS oscillator and including all internal error sources should be at the level of 10–12 ps at 1 s and <1 ps at 1000 s. The metrological specifications of T2L2 should permit to maintain a precision of 1 to a few ps when measuring the phase of a clock during around 1000 seconds.  相似文献   

10.
Spacecraft that are launched to operate in Earth orbit are susceptible to impacts by meteoroids and pieces of orbital debris (MMOD). The effect of a MMOD particle impact on a spacecraft depends on where the impact occurs, the size, composition, and speed of the impacting object, the function of the impacted system. In order to perform a risk analysis for a particular spacecraft under a specific mission profile, it is important to know whether or not the impacting particle (or its remnants) will exit the rear of an impacted spacecraft wall. A variety of different ballistic limit equations (BLEs) have been developed for many different types of structural wall configurations. BLEs can be used to optimize the design of spacecraft wall parameters so that the resulting configuration is able to withstand the anticipated variety of on-orbit high-speed impact scenarios. While the level of effort exerted in studying the response of metallic multi-wall systems to high speed particle impact is quite substantial, the extent of the effort to study composite material and composite structural systems under similar impact conditions has been much more limited. This paper presents an overview of the activities performed to assess the resiliency of composite structures and materials under high speed projectile impact. The activities reviewed will be those that have been aimed at increasing the level of protection afforded to spacecraft operating in the MMOD environment, and more specifically, on those activities performed to mitigate the mechanical and structural effects of an MMOD impact.  相似文献   

11.
Since 2004, we observe satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes called TAROT. One of them is located in France and the second at ESO, La Silla, Chile. The system processes the data in real time. Its wide field of view is useful for the discovery, the systematic survey and for the tracking of both catalogued and un-catalogued objects. We present a new source extraction algorithm based on morphological mathematic, which has been tested and is currently under implementation in the standard pipeline. Using this method, the observation strategy will correlate the measurements of the same object on successive images and give better detection rate and false alarm rate than the previous one. The overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like Geostationary Transfer Orbit (GTO). Results obtained in real conditions with TAROT are presented.  相似文献   

12.
Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield.  相似文献   

13.
Material density is an important, yet often overlooked, property of orbital debris particles. Many models simply use a typical density to represent all breakup fragments. While adequate for modeling average characteristics in some applications, a single value material density may not be sufficient for reliable impact damage assessments. In an attempt to improve the next-generation NASA Orbital Debris Engineering Model, a study on the material density distribution of the breakup fragments has been conducted and summarized in this paper.  相似文献   

14.
    
针对日益增长的空间碎片污染太空环境问题,建立了天基激光能量清除空间碎片的降轨模型。重点讨论了速度增量与空间碎片速度的夹角对近地点高度降低的影响,并考虑到天基平台与空间碎片作用距离的影响,从能量利用率的角度出发,提出了能量分配系数(CEA)的概念。基于CEA,设计出关于脉冲激光能量分配的策略,并与脉冲激光能量平均方式清除空间碎片的方式进行对比分析,说明了脉冲激光能量分配策略的有效性,提高了天基激光能量利用能力,达到了高效清除空间碎片的目的。  相似文献   

15.
Since 1982, the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by the National Aeronautics and Space Administration (NASA) as well as national and international programs. The CDDIS provides easy, timely, and reliable access to a variety of data sets, products, and information about these data. These measurements, obtained from a global network of nearly 650 instruments at more than 400 distinct sites, include DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GNSS (Global Navigation Satellite System), SLR and LLR (Satellite and Lunar Laser Ranging), and VLBI (Very Long Baseline Interferometry). The CDDIS data system and its archive have become increasingly important to many national and international science communities, particularly several of the operational services within the International Association of Geodesy (IAG) and its observing system the Global Geodetic Observing System (GGOS), including the International DORIS Service (IDS), the International GNSS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth rotation and Reference frame Service (IERS). Investigations resulting from the data and products available through the CDDIS support research in many aspects of Earth system science and global change. Each month, the CDDIS archives more than one million data and derived product files totaling over 90 Gbytes in volume. In turn, the global user community downloads nearly 1.2 Tbytes (over 10.5 million files) of data and products from the CDDIS each month. The requirements of analysts have evolved since the start of the CDDIS; the specialized nature of the system accommodates the enhancements required to support diverse data sets and user needs. This paper discusses the CDDIS, including background information about the system and its user communities, archive contents, available metadata, and future plans.  相似文献   

16.
We report on extensive BVRcIc photometry and low-resolution (λ/Δλ250) spectroscopy of the deep-space debris WT1190F, which impacted Earth offshore from Sri Lanka, on 2015 November 13. In spite of its likely artificial origin (as a relic of some past lunar mission), the case offered important points of discussion for its suggestive connection with the envisaged scenario for a (potentially far more dangerous) natural impactor, like an asteroid or a comet.Our observations indicate for WT1190F an absolute magnitude Rc=32.45±0.31, with a flat dependence of reflectance on the phase angle, such as dRc/d?0.007±2?mag?deg?1. The detected short-timescale variability suggests that the body was likely spinning with a period twice the nominal figure of Pflash=1.4547±0.0005s, as from the observed lightcurve. In the BVRcIc color domain, WT1190F closely resembled the Planck deep-space probe. This match, together with a depressed reflectance around 4000 and 8500 Å may be suggestive of a “grey” (aluminized) surface texture.The spinning pattern remained in place also along the object fiery entry in the atmosphere, a feature that may have partly shielded the body along its fireball phase perhaps leading a large fraction of its mass to survive intact, now lying underwater along a tight (1×80?km) strip of sea, at a depth of 1500?m or less.Under the assumption of Lambertian scatter, an inferred size of 216±30/α/0.1?cm is obtained for WT1190F. By accounting for non-gravitational dynamical perturbations, the Area-to-Mass ratio of the body was in the range (0.006?AMR?0.011)?m2?kg?1.Both these figures resulted compatible with the two prevailing candidates to WT1190F’s identity, namely the Athena II Trans-Lunar Injection Stage of the Lunar Prospector mission, and the ascent stage of the Apollo 10 lunar module, callsign “Snoopy”. Both candidates have been analyzed in some detail here through accurate 3D CAD design mockup modelling and BRDF reflectance rendering to derive the inherent photometric properties to be compared with the observations.  相似文献   

17.
Analysis of the efficiency of two basic strategies for de/re-orbiting large space debris objects to disposal orbits (DO) is given. Large objects in LEO are classified into groups with similar orbital inclinations and comprise primarily last stages of launch vehicles, in GEO vicinity the paper studies upper stages. Under the first de/re-orbiting variant, it is assumed a spacecraft-collector is equipped with several thruster de/re-orbiting kits (TDKs); one of them can be fixed on an object and is capable of de/re-orbiting an object to a DO independently of the collector. In the second variant, a collector operates as a space tug: transfers objects to a DO and then returns to the next objects in line. The authors study possible configuration layouts of collectors in LEO and near GEO. The available analogous projects are analyzed. The efficiency of both de/re-orbiting variants can be properly compared using the estimations of collector's dry mass and having at one's disposal the parameters of the maneuvers required for transfers between all objects in the group. As reasonable criteria of effectiveness, one can consider (separately or jointly) the launch mass of an equipped collector, its ΔV budget, and the required number of such active spacecraft. Two de/re-orbiting variants are compared in terms of these criteria via mass-energy diagrams constructed for each group of objects in both altitude regions. Analysis of these diagrams shows that low Earth orbits can be more efficiently cleaned under the first de-orbiting variant by using a two-stage space system consisting of an active spacecraft carrying TDKs. For GEO, it is expedient to choose the second re-orbiting variant using a single-stage spacecraft. Our analysis shows that LEO cleaning is an order of magnitude more expensive than that for GEO, hence the problem of LEO population should be given increased attention.  相似文献   

18.
Molecular biology experiments on the International Space Station (ISS) continue to face challenges of sample harvesting and sample return to earth for post flight analysis; however, the use of Kennedy Space Center Fixation Tubes filled with RNALater has proven to be a robust solution to many of these challenges. While it is clear that one direction of future spaceflight experimentation may be towards enhanced on-orbit analytical capabilities, the rapid progress of earth-bound analytical capacity dictates that facile return of molecular biology samples from the ISS will continue to be a mainstay of space life sciences research and flight operations. In this paper we present a case study of the successful performance of KFTs and RNALater over a broad set of operational conditions of ascent configuration, on-orbit experiment use, on-orbit storage and sample return configurations that are unique to ISS current operations and constraints. We also provide observations on performance limits and discuss deployment opportunities and scenarios that are consistent with continued successful ISS molecular biology experimentation.  相似文献   

19.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   

20.
Strong earthquakes have an impact on the regional thermal radiation background, which has been both observed and confirmed. This effect produces anomalies in the thermal radiation background (TRBA) and increases the difficulty of extracting a thermal radiation anomaly (TRA) that is associated with an earthquake occurring during the same time period. The extraction and identification of such anomalies has been ignored by previous studies. In this study, we investigate the time-frequency analysis (TFA) method, together with the wavelet filtering of the Daubechies method and the relative power spectrum analysis of the Fourier Welch method to extract and analyse the TRBA caused by the 2008 Wenchuan Ms 8.0 earthquake and the TRA of the 2013 Minxian-Zhangxian Ms 6.6 earthquake using data concerning the brightness temperature of a black body (TBB) from the Fengyun-2 series of geostationary meteorological satellites developed by China. The result showed that this method can effectively extract and analyse the TRBA caused by the Wenchuan earthquake and the TRA of the Minxian-Zhangxian earthquake form a complex background environment. Furthermore, we discussed the impact of the earthquake on the TRBA and segmented the process. The impact is mainly reflected by three aspects; the characteristic period of the TRBA changes, the TRBA occurs at the same time every year, which is identical to the time at which the earthquake anomaly occurred, and the impact process is in stages. We also summarized the correlation between the characteristic parameters of a TRA and the regional thermal radiation background, geography, and climatic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号