首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纯生啤酒中残存的蛋白酶A严重影响泡沫稳定性,制约了纯生啤酒的质量提升。为了探索啤酒发酵过程中影响蛋白酶A分泌的因素,作者分别考察了菌种、酵母生理状态、酵母代数、麦汁浓度、发酵时间等对蛋白酶A分泌的影响。结果发现,蛋白酶A分泌量高的菌株,处于稳定期之后的酵母、较高的酵母代数、较高的原麦汁浓度和在发酵阶段末期都会导致发酵液中蛋白酶A活性偏高。建议在实际生产中,采用蛋白酶A分泌量少的菌种、调整酵母生理状态、使用小于3代的酵母、采用18°P以下的麦汁发酵和尽早结束发酵都会对降低蛋白酶A的分泌量起到积极作用。  相似文献   

2.
Barley isolate Lactococcus lactis M30 produces an antimicrobial proteinaceous activity, which at least under laboratory conditions was shown to target beer spoiling lactic acid bacteria, including Lactobacillus brevis BSH9. The aim of this study was to investigate the application of this antibacterial activity at various stages of the brewing process and in packaged beer. Lactococcus lactis M30 was shown to produce the antimicrobial activity during growth under specific conditions in fortified unhopped wort. However, this activity was lost during wort boiling and yeast fermentation. When the bacteriocin was added directly to beer it retained in vitro activity following pasteurisation, while it was also shown to inhibit growth in situ when pasteurised beer was challenged with low levels of the beer spoiling Lactobacillus brevis BSH9 culture. The capacity of the bacteriocin to prevent microbial spoilage of beer was tested at various temperatures over a period of seven weeks. Storage of bacteriocin‐containing beer at 30°C or room temperature resulted in a decrease in antimicrobial activity over time, but when refrigerated or frozen, this beer retained sufficient activity to be effective against Lactobacillus brevis BSH9.  相似文献   

3.
Increasing the quantity of beer production without diminishing the quality of the product is a key concern of the beer producing industry. Modifications to the brewery's equipment and settings are the most commonly used methods to improve the brewing process, while the supreme importance of the physiological state of the beer producing organisms, the yeast cells, for the productivity of the brewing process is often poorly recognised. The work described here was designed to optimise two processes: the inoculation regime used to produce high gravity bottom-fermenting beer, and the production of high quality diet beer. To achieve these aims, flow cytometry was used to follow changes in the distribution of DNA, neutral lipid and 3β-hydroxsterol contents in Saccharomyces carlsbergensis strains during inoculation, fermentation and storage. This allowed potential time-saving alterations in the process to be identified. Double staining techniques proved that vigorous fermentative activity and long-term survival capacity during main and secondary fermentation requires intense multiplication of the yeast cells during inoculation. The production of high gravity beer was then enhanced by altering the schedule of the wort additions, and thus increasing the yeast's activities related to multiplication. To produce diet beer, oligosaccharides that remain after the standard brewing process are degraded by adding small amounts of wort, usually during secondary fermentation. However, during this period of fermentation the physiological activity of the yeast cells is hampered by low carbon and high ethanol concentrations. Adding small batches of wort at carefully defined time points and in optimised amounts, even during the main fermentation, improves the physiological state of the yeast cells and rapidly decreases the carbon concentration within the fermentation tank. Both of these factors help to promote quick fermentation to a high quality diet beer. Thus, the flow cytometric investigations provided a reliable basis for identifying effective means of improving the process regime for brewing both of these products.  相似文献   

4.
The effect of the long‐term maintenance method used with a brewer's yeast on its technological properties was determined in laboratory fermentation trials with a 12°P all‐malt wort. The trials were performed at a constant temperature and under conditions of constant substrate concentration. Two cultures of a bottom fermenting yeast, Saccharomyces pastorianus RIBM 95, were tested — one culture was maintained by subculturing on wort agar slopes at 4°C and the other culture underwent a three year storage in liquid nitrogen at minus 196°C. Parameters under investigation included yeast vitality measured as acidification power (AP), fermentation time needed to reach an alcohol level of 4%, the yeast cell count, sedimentation of the yeast during the fermentation, and the production of beer flavour compounds in green beer. The yeast culture stored for three years in liquid nitrogen displayed a higher count of suspended cells, required a shorter time to attenuate the wort to produce 4% alcohol and produced a 1.5 to 2.5‐fold higher concentration of a number of flavour compounds. The long‐term storage method did not affect the sedimentation ability and vitality of the yeast strain tested.  相似文献   

5.
Amylolytic brewing yeast can be used for the production of low carbohydrate beer and for maximizing fermentation efficiency. In this paper we describe the characterisation of amylolytic brewing yeast in which the STA2 (DEXI) gene, which codes for an extracellular glucoamylase, was cloned under two different promoters; PGK (phosphoglycerate kinase) and GPD1 (sn-glycerol-3-phosphate dehydrogenase) present on episomal plasmids. Both amylolytic strains were shown to ferment and degrade wort as efficiently as the control strain supplemented with an exogenous commercial glucoamylase, despite reduced intracellular glycogen levels (30% of wild-type). However, the nature of the promoter on the expression plasmid was shown to influence both the growth rate of the amylolytic strains and the stability of the plasmids during non-selective growth. One of the strains containing plasmid pDVX4 (GPD promoter) was found to show high levels of stability when tested in ten successive pilot scale (8Hlitre) fermentations.  相似文献   

6.
The impact of the initial dissolved oxygen, fermentation temperature, wort concentration and yeast pitching rate on the major fermentation process responses were evaluated by full factorial design and statistical analysis by JMP 5.01 (SAS software) software. Fermentation trials were carried out in 2L‐EBC tall tubes using an industrial lager brewing yeast strain. The yeast viability, ethanol production, apparent extract and real degree of fermentation were monitored. The results obtained demonstrate that very high gravity worts at 22°P can be fermented in the same period of time as a 15°P wort, by raising the temperature to 18°C, the oxygen level to about 22 ppm, and increasing the pitching rate to 22 × 106 cell/mL. When diluting to obtain an 11.5°P beer extract, the volumetric brewing capacity increased 91% for the 22°P wort fermentation and 30% using the 15°P wort. After dilution, the fermentation of the 22°P wort resulted in a beer with higher esters levels, primarily the compound ethyl acetate.  相似文献   

7.
Proteinase A, excreted from yeast cells into beer during fermentation in the brewing process, has been shown to degrade foam-active proteins and to decrease foam stability. In order to improve the measurement of this enzyme in beer, a new fluorescent peptide, MOCAc-Ala-Pro-Ala-Lys-Phe-Phe-Arg-Leu-Lys (Dnp)-NH2, was synthesised and applied to the accurate and rapid estimation of proteinase A in commercial beer and fermenting wort. This novel substrate is several hundred times more sensitive to proteinase A than other previously reported synthetic substrates or native protein substrates. The concentration of proteinase A in beer is closely related to foam stability and proteinase A activity was found to increase gradually during fermentation. The concentration of proteinase A excreted from yeast cells is also closely related to the vitality of pitching yeast cells. This new method was successfully applied to the evaluation of yeast vitality and the development of optimum yeast handling procedures.  相似文献   

8.
Several hop derived compounds in wort are known to be converted by yeast during fermentation, influencing the overall perception of the beer. A deeper understanding of such metabolic processes during fermentation is needed to achieve better control of the outcome. Here, the interaction between hop derived compounds and the yeast genera Brettanomyces was studied. Several Brettanomyces strains with different genomic backgrounds were selected, focusing on two traits: beta-glucosidase activity and nitrate assimilation. The role of three beta-glucosidases present in Brettanomyces bruxellensis and Brettanomyces anomalus and their impact on the final monoterpene alcohol profile was analysed. The beta-glucosidase activity was highly strain dependent, with B. anomalus CRL-49 exhibiting the highest conversion. Such activity could not be related to the release of aglycones from hops during fermentation, as a substantial part of such activity was intracellular. Nevertheless, the reduction of geraniol to β-citronellol was remarkably efficient for all Brettanomyces strains during fermentation, and it is suggested that two oxidoreductases BbHye2 and BbHye3 may have an influence. Moreover, the transfer of nitrate from hops to wort and its further assimilation by Brettanomyces species was analysed. The amount of nitrate in wort proved to be linearly proportional to the contact time of the hops with the wort. The level of nitrate assimilation by yeast was shown to be dependent on the nitrate assimilation cluster (YNR, YNI, YNT). Hence, the desired yeast strains may be selected according to the genetic make-up. © 2020 The Authors. Journal of the Institute of Brewing published by John Wiley & Sons Ltd on behalf of The Institute of Brewing & Distilling  相似文献   

9.
The aim was to discover the effect of high gravity brewing on yeast protease activity during fermentation, on the loss of hydrophobic polypeptides from wort during fermentation, and on the foam stability of stored beer. The hydrophobic polypeptide content of low (10° Plato) gravity worts showed a steady decline throughout fermentation, but for the 20° Plato wort there was a rapid decline over the first 8 days of fermentation, followed by little change over the remaining period. The decrease in hydrophobic polypeptides was greater in the high gravity fermentation. Proteinase A increased during fermentations with the highest levels being present at the end of fermentations. High gravity fermentations exhibited levels of yeast protease that from the 3rd to 11th day of fermentation were at least twice the values of the low gravity fermentations. The high gravity brewed beer contained significantly higher levels of proteinase A activity than the low gravity brewed beer. The inclusion of FERMCAP™, an antifoam, in high gravity wort did not affect either the hydrophobic polypeptide levels or foam stability of the resultant beer. This suggests that proteinase A, rather than fermenter foaming, must be the major contributor to the lack of foam stability of high gravity brewed beer. Head retention measurements conducted on the high and low gravity brewed bottled beers, over a five month period, demonstrated a steady decline in foam stability for both beers. The declines in head retention did not occur in high and low gravity beers that had been pasteurised.  相似文献   

10.
The addition of papain and proteases isolated from various yeast strains to fermentation to reduce chill-haze formation is discussed. Particular attention is paid to the behaviour of the yeast throughout fermentation and to the character of the final beers. The results suggest that fermentation in the presence of papain and a protease preparation prepared from Candida olea 148 progress normally and in the case of C. olea 148 protease-treated fermentation no change in beer flavour was detected.  相似文献   

11.
This study used a recombinant Saccharomyces cerevisiae strain, which expressed both β‐glucanase enzyme and reduced Pro‐teinase A expression during wort fermentations. The genetic stability and fermentation features of the strain were examined. The recombinant strain's proteinase A activity was reduced compared to the parent strain; β‐glucanase was produced throughout the fermentation. The fermentation with the recombinant S. cerevisiae strain exhibited a larger reduction in β‐glucan content than what was observed with the control strain, with β‐glucan degradation above 80%. The foam stability period was reduced when the beer produced by the recombinant S. cerevisiae was stored for 3 months. SDS‐PAGE analysis of the beer proteins indicated that lipid transfer protein 1 had disappeared. Fermentation studies indicated that based on the parameters examined, this recombinant strain was suitable for industrial beer production.  相似文献   

12.
This work evaluated the potential of three commercial non-Saccharomyces yeast strains Torulaspora delbrueckii (Biodiva and Prelude) and Lachancea thermotolerans (Concerto) for beer fermentation. The fermentation performance, volatile and non-volatile profiles were compared. Growth behaviours of all three yeast strains exhibited similar trends during the initial fermentation phase although a marked population decline was detected in strains Prelude and Concerto, which also showed a rapid utilisation of maltose, while strain Biodiva was unable to consume maltose and consumed lesser amounts of amino acids. Additionally, terpenoids inherently absent in the wort such as β-caryophyllene and geranyl acetone were produced in all beers, significantly higher in beers fermented with strain Prelude. For volatile profiles, Prelude and Concerto produced more ethanol and significantly higher amounts of acetate esters and long-chained ethyl esters. Strain Biodiva, on the other hand, produced higher amounts of isoamyl alcohol and ethyl butanoate.  相似文献   

13.
The use of carbohydrate adjuncts such as sucrose, fructose and glucose in brewer's wort significantly modifies the initial wort sugar spectrum and also the pattern of sugar uptake during fermentation by a strain of Saccharomyces uvarum (carlsbergensis). Under these conditions, the concentration of glucose and fructose in the wort was observed to increase when compared to worts in which corn starch was employed as an adjunct and glucose was taken up at a faster rate than fructose. The increase in glucose concentration in the wort also resulted in severe repression of maltose and maltotriose utilization with significant levels of these sugars remaining in the beer produced.  相似文献   

14.
A gene (POF1) has been cloned, which confers upon yeast (Saccharomyces cerevisiae) the ability to decarboxylate phenolic acids such as ferulic and trans-cinnamic acid. This property was previously shown to be a cause of phenolic off-flavour production in wort fermentations. The identity of the cloned gene was confirmed as POF1 by gene disruption techniques. Southern blotting of total genomic DNA revealed that sequences homologous to POF1 are conserved in Pof? brewing strains of Sacch. cerevisiae. The transformation of a Pof? lager strain with the cloned POF1 gene led to the production of an aroma characteristic of a phenolic off-flavour, when the transformed strain was used in wort fermentations. This latter observation suggests that the Pof? phenotype of brewers' yeast is specifically due to the absence of a functional POF1 gene.  相似文献   

15.
Aroma‐active higher alcohols and esters are produced intracellularly in the cytosol by fermenting lager yeast cells, which are of major industrial interest because they determine aroma and taste characteristics of the fermented beer. Wort amino acid composition and their utilization by yeast during brewer's wort fermentation influence both the yeast fermentation performance and the flavour profile of the finished product. To better understand the relationship between the yeast cell and wort amino acid composition, Plackett–Burman screening design was applied to measure the changes in nitrogen composition associated with yeast amino acids uptake and flavour formation during fermentation. Here, using an industrial lager brewing strain of Saccharomyces pastorianus , we investigated the effect of amino acid composition on the accumulation of higher alcohols and volatile esters. The objective of this study was to identify the significant amino acids involved in the flavour production during beer fermentation. Our results showed that even though different flavour substances were produced with different amino acid composition in the fermentation experiments, the discrepancies were not related to the total amount of amino acids in the synthetic medium. The most significant effect on higher alcohol production was exercised by the content of glutamic acid, aromatic amino acids and branch chain amino acids. Leucine, valine, glutamic acid, phenylalanine, serine and lysine were identified as important determinants for the formation of esters. The future applications of this information could drastically improve the current regime of selecting malt and adjunct or their formula with desired amino acids in wort. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

16.
Previous studies show that the complexity of hop aroma in beer can be partly attributed to the hydrolysis of glycosidically bound monoterpene alcohols extracted from hops during the brewing process to release volatile aglycones. However, fundamental studies that examine the extraction of glycosides during brewing and their subsequent hydrolysis by yeast have not been performed. Furthermore, extraction of other hop‐derived compounds into beer shows a strong dependency on the hop cultivar being used and the point at which it is added. This study focused on the extent of glycoside extraction owing to hopping regime and cultivar, and their hydrolysis by yeast β‐glucosidase activity. Glycoside concentrations of wort made with three different hopping regimes and three cultivars were measured by the difference in volatile aglycone concentrations between samples treated with purified β‐glucosidase and untreated samples. Aglycone concentrations were measured by solid‐phase microextraction gas chromatography–mass spectrometry. Additionally, β‐glucosidase activities for 80 different yeast strains and their effect on aglycone concentration in wort were determined. Results showed that yeast have a wide range of abilities to hydrolyse glycosides with a maximum hydrolysis occurring after 3 days of fermentation regardless of yeast activity. Although it was shown that yeast are capable of glycoside hydrolysis, glycoside concentrations in wort are low and make small contributions to hop aroma. These results help explain the extent to which different brewing yeasts and hopping regimes contribute to hoppy beer aroma through the hydrolysis of non‐volatile hop‐derived compounds. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

17.
发泡酒酿造用贫氮酵母性质的研究   总被引:1,自引:0,他引:1  
陈阿扣  顾国贤  陆健 《酿酒》2002,29(2):51-54
研究了贫氮酵母在发酵过程中麦汁各组成成分的利用情况及其生理特性,研究发现,贫氮酵母在贫氮麦汁中能利用少部分的脯氨酸和相当部分的麦芽三糖,发酵后的啤酒中总含氮量符合淡爽啤酒的要求;它是一株中等凝聚性的酵母,具有一定的实际应用价值。  相似文献   

18.
经诱变、筛选处理的“珠研”2~#菌株经小试、中试证明其啤酒发酵性能比原引进的菌株有较大的优越性。为验证此菌株对麦汁及扩大生产的适应性,我们对此菌株进行生产性扩大试验。实践证明,“珠研”2~#菌株对麦汁及扩大生产适应性较强。该菌株具有发酵温度高、降糖快、双乙酰还原能力强、酵母凝集性好、发酵周期短、生产的啤酒质量优越等优点。取得与小试、中试基本一致的结果。我们认为“珠研”2~#菌株啤酒快速发酵新工艺,可望有良好的推广应用前景。  相似文献   

19.
Horace Brown spent fifty years conducting brewing research in Burton‐on‐Trent, Dublin and London. His contributions were remarkable and his focus was to solve practical brewing problems by employing and developing fundamental scientific principles. He studied all aspects of the brewing process including raw materials, wort preparation, fermentation, yeast and beer stability. As a number of previous presenters of the Horace Brown Lecture have discussed Brown's achievements in detail, the focus of this paper is a review of the brewing research that has been conducted by the author and his colleagues during the past forty years. Similar to Horace Brown, fundamental research has been employed to solve brewing problems. Research studies that are discussed in this review paper include reasons for premature flocculation of ale strains resulting in wort underattenuation including mechanisms of co‐flocculation and pure strain flocculation, storage procedures for yeast cultures prior to propagation, studies on the genetic manipulation of brewer's yeast strains with an emphasis on the FLO1 gene, spheroplast fusion and the respiratory deficient (petite) mutation, the uptake and metabolism of wort sugars and amino acids, the influence of wort density on fermentation characteristics and beer flavour and stability, and finally, the contribution that high gravity brewing has on brewing capacity, fermentation efficiency and beer quality and stability.  相似文献   

20.
Different hopping regimes were evaluated to investigate the effect on the oxidative stability of wort and beer. Compared with a single hop dosage at the beginning of wort boil, it was possible to increase the concentration of α‐acids in pitching wort and beer by applying incremental hop dosage, dry hopping or the use of a pre‐isomerized hop product in combination with an α‐acid extract, which concomitantly resulted in lower iron concentrations and an enhanced flavour stability as indicated by standard wort and beer analyses, atomic absorption spectroscopy, electron spin resonance spectroscopy and sensory analysis of fresh and force‐aged beers. The functional principle of hop dosage variations is explained by saving of α‐acids throughout the wort production process, which yields an increased formation and precipitation of pro‐oxidative acting transition metal ions (e.g. Fe) in α‐acid‐complexes during the whirlpool rest and fermentation. Consequently, fewer reactive oxygen species are generated. Additional laboratory trials simulating wort cooling and beer storage in buffered model solutions proved that un‐isomerized α‐acids are strong iron chelators and confirmed the functional principle of the applied hopping regimes. Negative effects of higher α‐acid contents on fermentation performance and depletion of the zinc concentration, which is an essential nutrient for yeast, could be excluded. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号