首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用冲击实验研究了热处理工艺对Mg-5Y-3Nd-1Gd-0.4Zr镁合金U型缺口和无缺口试样的冲击韧性的影响,同时研究了时效时间对于时效态样品冲击性能缺口敏感性的影响.结果表明:固溶处理后合金的冲击韧性最高,断口形貌具有韧脆混合断裂特征,而时效后合金的冲击韧性迅速降低,断口形貌呈现脆性断裂的特征.这是由于固溶处理后合...  相似文献   

2.
热处理对压铸Mg-8Gd-3Y-0.5Zr合金组织性能的影响   总被引:1,自引:0,他引:1  
采用气体保护法制备Mg-8Gd-3Y-0.5Zr(GW83K)合金,并冷模压铸成拉伸试样。通过光学显微镜、扫描电镜观察及力学性能测试等分析合金压铸态和不同热处理状态下的显微组织及力学性能。结果表明:冷模压铸GW83K合金经热处理后,其力学性能较压铸态均有所提高,尤其是经低温短时固溶处理(T4)后的合金,其晶粒度变化不大,组织比较均匀,片层状的共晶体消失,第二相以不连续的棒状或粒状分布于晶界处。GW83K-T4合金的室温拉伸性能可达到σb=261.7MPa,σs=240.8MPa,δ5=6.0%,比压铸态合金分别提高了21%,28.4%和30.4%,且该合金具有较好高温力学性能。  相似文献   

3.
采用光学显微镜、扫描电镜、X射线衍射仪、XHB-3000型布氏硬度计和万能电子拉伸实验机等研究了Mg-11Gd-3Y-0.8Ca-0.5Zr合金的最佳热处理工艺和热处理对合金显微组织及性能的影响。结果表明:合金的最佳固溶工艺为485℃×16 h+505℃×16 h,时效工艺为225℃×12 h。铸态合金主要由初生相α-Mg基体和大量处于晶界处网络状的Mg5Gd、Mg24Y5、Mg2Ca相组成。经固溶时效后,相种类没有变化,但晶界变得清晰,第二相的形貌显著改变,呈颗粒状和短棒状均匀分布在基体上,组织得到明显改善,合金的力学性能显著提高,时效态合金的抗拉强度、屈服强度及硬度均显著优于铸态合金,分别由原来的217 MPa、185 MPa和92 HB增加到265 MPa、228 MPa和121 HB,这主要归功于时效沉淀强化的作用。  相似文献   

4.
通过对Mg-6Gd-5Y-1Zn(质量分数,%)合金在固溶和时效处理状态下显微组织和力学性能的研究发现,α-Mg基体、沿挤压方向分布的条状18R-LPSO相、少量的Mg24(GdYZn)5 相以及细层片状的14H-LPSO相构成了挤压态合金的组成相。挤压态合金经固溶(T4)处理后,一部分18R-LPSO相溶入基体,并且基体中的14H-LPSO相伸长同时粗化。挤压态合金经过固溶加时效(T6)处理后,大量β′相从α-Mg基体中析出。T6态合金的室温力学性能最好,其屈服强度、抗拉强度及伸长率分别为272 MPa、406 MPa和6.1%。β′相沉淀也发生在挤压态合金的直接人工时效(T5)处理过程,但相比于T6处理,14H-LPSO相和β′相在基体中的体积分数均偏低。  相似文献   

5.
利用DSC、OM、SEM、EDS和力学性能测试研究Mg-11Gd-3.6Y-2Zn-0.6Zr(质量分数,%)合金的形变组织和变形态合金分别在T4、T5、T6处理下的组织和力学性能的变化。结果表明:T6处理对合金综合力学性能的改善更有利。T6处理时,随固溶温度的增加,合金的综合力学性能呈现先增大后减小的趋势,其中,在(430℃, 8h)+(225℃, 16 h)时,抗拉、屈服强度和伸长率均表现良好,分别为397 MPa、300 MPa和12%,强度比挤压态分别提高了14.9%和28.8%,伸长率有所下降。T6处理的固溶温度过高时,尽管组织更加均匀,但是由于层片状和块状LPSO相的减少和晶粒长大,强度下降严重。  相似文献   

6.
研究铸态和挤压态Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr合金的显微组织、时效强化和力学性能。铸锭在T4处理后分别于400、450和500°C进行挤压,挤压比为10:1。在细晶强化和析出强化的共同作用下,于400°C挤压的样品经T5处理后可以得到最优的力学性能,所得的晶粒尺寸约为5.0μm,其初始和峰值硬度分别为HV109和HV129。室温下的拉伸屈服强度、抗拉强度和伸长率分别达到391MPa、430MPa和5.2%。  相似文献   

7.
采用硬度检测、拉伸力学性能测试、金相、扫描及透射电镜观察等方法,研究了挤压态Mg-12Gd-3Y-0.6Zr合金经T4、T5和T6热处理后显微组织及力学性能的变化.结果表明:挤压态合金宜采用T5热处理.经T5热处理后,合金的屈服强度、抗拉强度分别达到372、403 MPa,远高于T4、T6处理的,其原因在于T5热处理后合金中存在大量棱镜片状第二相.T6热处理时,虽然合金的时效强化效果优于T5态合金,但晶粒长大严重降低了合金的力学性能.  相似文献   

8.
采用盐水浸泡实验研究了铸态(F)、固溶(T4)和250℃下不同时效时间的Mg-10Gd-3Y-0.4Zr镁合金在5%NaCl溶液中的腐蚀行为.结果表明,时效时间为193小时之前,合金的腐蚀速率随时效时间增加而增加,之后有所降低;T4态合金的耐蚀性最好,F态最差.合金腐蚀速率随热处理状态的变化与其微观组织有关,F态合金中的富RE化合物能与基底α相构成电偶腐蚀而加剧合金腐蚀;峰值时效状态下合金中的β'和β1相不能作为腐蚀阻挡层,而过时效状态下连续分布的β相能在一定程度上起腐蚀阻挡层作用,降低合金腐蚀速率.  相似文献   

9.
利用OM、XRD、SEM和TEM研究了Mg-10Gd-3Y-1.2Zn-0.5Zr(质量分数,%)铸态合金的显微组织和不同温度下固溶热处理后的组织演变规律。结果表明:Zn含量为1.2%的合金在等温固溶条件下,随时间的延长,晶界处LPSO层状生长,同时层状相向晶内延伸,层状相的层片变粗。随温度的升高铸态组织中原有的层状相溶解,而沿晶界化合物则向晶内有更宽的层状相生成,并随着温度的提高而变宽。此合金经不同温度的固溶后时效硬度最高可达1150MPa。  相似文献   

10.
利用金相组织观察、硬度测试、抗菌性能检测和扫描电镜观察等手段研究了不同热处理工艺对3Cr13MoCu不锈钢性能的影响。研究结果表明,仅经固溶处理的3Cr13MoCu不锈钢硬度较高,但不具备抗菌功能。600℃以上时效6h后,该钢的抗菌性能迅速提高,但由于基体发生回火软化,其硬度迅速下降。3Cr13MoCu不锈钢经1080℃固溶处理30min,水冷+700℃时效处理6h,空冷+1000℃固溶处理5min,油冷后,不仅具有较高的硬度,且依然保持着良好的抗菌功能。  相似文献   

11.
The extruded Mg-12Gd-3Y-0.4Zr alloy sheets were rolled from 30 mm to 2.3 mm at 723 K by electric heated rollers,and then different heat treatments were performed to improve their properties.The microstructures and tensile properties of the alloy sheets were investigated,including as-rolled,annealed and T5 treated.The experimental results show that the grains are effectively refined by the rolling process,and the strength of the rolled alloy is greatly enhanced.The annealed alloy exhibits lower strength a...  相似文献   

12.
Mg-10Gd-3Y-0.5Zr alloy was cast in a step-like mould with five different cooling rates. The as-cast microstructures of the different steps were examined with optical microscope(OM) and scanning electron microscope(SEM). The room temperature mechanical properties were examined by tensile test. The results show that the microstructures are refined and the second phase particles are distributed much uniformly with the increase of cooling rate. The increase of yield strength, ultimate strength and elongation can be ascribed mainly to the strengthening effect of fine grains. The relationship between grain size and yield strength/hardness agrees with the Hall-Petch behavior.  相似文献   

13.
本文以相图热力学计算为基础,计算了Mg-9Gd-3Y-0.6Zn-0.5Zr新型合金的垂直截面图,并结合扎克哈罗夫经验公式和合金的DSC曲线分析设计了该合金的热处理工艺,并用CMT5105A型电子万能试验机和显微硬度仪测试了该合金的力学性能。结果表明:在计算所得的Mg-9Gd-3Y-0.6Zn-0.5Zr相图指导下制定的热处理工艺是正确的;挤压态Mg-9Gd-3Y-0.6Zn-0.5Zr合金的最佳热处理工艺为:200℃时效63 h,抗拉强度σb为=430 MPa,比挤压态提高了30.9%。  相似文献   

14.
Mg-10Y-4Gd-1.5Zn-0.4Zr合金的摩擦磨损行为   总被引:1,自引:0,他引:1  
  相似文献   

15.
Microstructure evolution and mechanical properties of the cast Mg-10Gd-3Y-1.2Zn-0.4Zr(mass fraction,%) alloy during annealing at 798 K for different time were investigated.In the as-cast state,the microstructure consists ofα-Mg,Mg_5(Gd,Y,Zn) eutectic compounds and stacking faults(SF) of basal plane distributed from grain boundary to inner grain.During heat treatment at 798 K,the SF and parts of eutectic compounds dissolve into the matrix gradually,simultaneously,a new straight lamellar phase with 14H typ...  相似文献   

16.
研究Mg-8Gd-3Y-0.6Zr合金热压缩过程的动态再结晶规律.对该合金在变形温度为623~773 K、应变速率为0.01~1 s~(-1)条件下进行单向压缩实验,用金相显微镜、场发射扫描电子显微镜及织构测试仪对压缩后的合金组织与晶体取向进行分析.结果表明:曲线的峰值应力、稳态流动应力均随Zener-Hollomon (Z)参数的增加而增加;变形温度的升高以及应变速率的提高均能减弱{0001}基面织构,强化柱面织构;动态再结晶晶粒尺寸随Z参数的增加而减小.根据实验结果,该合金在热轧时ln(Z)宜控制在28~32之间,变形温度在723~773 K之间.  相似文献   

17.
通过金相观察、X射线衍射、扫描电镜和拉伸性能测试等方法,研究了不同固溶处理工艺对砂型铸造Mg-4Y-2Nd-1Gd-0.4Zr镁合金微观组织和力学性能的影响。结果表明:合金铸态组织主要由α-Mg基体和共晶Mg24 Y5相组成,共晶相区域存在少量的方块相;固溶处理后,合金中方块相明显增多,且主要分布在晶界处;525℃×8 h为合金的最佳固溶工艺;铸态与固溶态合金的室温拉伸断裂方式有所不同,铸态合金总体呈准解理断裂,而525℃×8 h固溶处理后则为典型的穿晶解理断裂方式。  相似文献   

18.
The microstructures and mechanical properties of Mg-9Gd-4Y-0.6Zr alloy were investigated. The results show that the ultimate tensile strengths of the extrusion-T5 temper of this alloy at -196, 25,250, 300 and 350℃ are as high as 521,370, 348, 262 and 150 MPa, respectively. It is noteworthy that 8% plasticity occurs at -196 ℃ and 180% superplasticity occurs at 400℃. In the peak hardness of Cast-T5, Cast-T6, Ext-T5 and Ext-T6, the highest is that of Ext-T5. The prismatic precipitates providing an effective barrier to dislocation gliding on the basal plane are the cause of strengthening of this alloy. The plate-shaped precipitates formed on the prismatic planes provide the most effective barriers to the gliding dislocations, and they are the cause of strengthening of this alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号