首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
石永芳  姜宏  章翔峰 《机床与液压》2019,47(20):187-191
针对轴承不同故障状态难以识别的问题,将特征选择方法应用于滚动轴承故障诊断。在互信息方法的基础上提出非参数互信息(NPMI)的特征选择方法:首先从原始信号中提取能够表征轴承运行状态变化的时频域统计特征并建立多域特征集;然后利用NPMI特征选择方法去除特征集中的无关特征和冗余特征,建立敏感特征集,再利用多维尺度分析对敏感特征集进行降维可视化处理,比较特征的类别可分及聚类能力;最后将降维后的特征向量输入到支持向量机中得到不同故障的识别结果。以分类器正确率为依据,验证了基于非参数互信息特征选择方法的有效性和优越性。  相似文献   

2.
在实际工况下滚动轴承较易发生故障,为了保障机械运行可靠性,对其进行故障诊断研究显得非常重要,提出一种基于局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)降噪与最小二乘支持向量机(Least Squares Support Veotor Machine,LS-SVM)的滚动轴承故障诊断方法。首先,利用LCD对轴承信号进行自适应性分解,得到一系列内禀尺度分量(Intrinsic Scale Component,ISC),然后结合峭度准则筛选出包含主要特征信息的分量,完成信号降噪预处理,并与经验模态分解(Empirical Mode Decomposition,EMD)进行对比,研究LCD算法的优越性;最后提取ISC模糊熵作为信号的敏感特征集,输入到训练好的LS-SVM分类器中进行轴承状态识别。实验研究表明,提出的基于LCD降噪与LS-SVM的轴承故障诊断方法能有效地识别出多种轴承类型,识别率高达84%,是一种行之有效的轴承诊断算法。  相似文献   

3.
陈维望  李军霞  张伟 《机床与液压》2022,50(24):159-164
滚动轴承早期故障信号易受噪声干扰,故障冲击成分难以提取,故障识别困难。为从多角度提取故障轴承振动信号特征参数,利用变分模态分解(VMD)将振动信号分解为若干本征模态分量(IMFs),基于包络熵、相关系数、峭度筛选IMF分量。提取所选IMF的时域和频域特征、信号VMD能量熵及各IMF能量比组成特征向量,从时域、频域和能量角度反映故障信息。使用麻雀搜索算法(SSA)优化SVM参数,确定最优参数,克服参数选择难题。将样本特征向量输入SSA-SVM中进行故障分类,轴承故障实验数据表明:该方法故障识别平均准确率在98.71%以上;与单一域特征相比,该方法对故障类型和损伤程度识别效果更佳。  相似文献   

4.
针对滚动轴承故障特征提取过程中存在低相关特征和特征信息冗余的问题,提出一种基于调整互信息(Adjust Mutual Information,AMI)和标准差(Standard Deviation,SD)的特征选择方法,量化评价统计特征并选择和故障状态相关度较高的统计特征用来进行轴承状态的判识;对于高维故障特征集采用线性判别分析方法实现数据从高维到低维的映射,提升基于支持向量机和极限学习机构建的故障诊断模型的性能。采用变负载情况下的12种滚动轴承故障数据进行实验验证所提方法的有效性和适应性,实验表明,所提方法能够有效筛选出相关特征,实现滚动轴承故障状态的准确识别,并具有良好的适应性。  相似文献   

5.
针对滚动轴承故障,提出了基于相关原则优化阈值的小波去噪和最小二乘支持向量机相结合进行滚动轴承故障诊断的方法,采用相关原则优化阀值的小波对轴承早期故障特征进行提取,运用能量-特征法提取出信号特征,然后利用最小二乘支持向量机多分类算法进行故障类型的识别。实验与仿真结果表明:基于相关原则优化阈值的小波变换和最小二乘支持向量机相结合的故障诊断方法能有效地诊断出滚动轴承的典型故障。  相似文献   

6.
针对滚动轴承剩余寿命(RUL)预测中自动故障边界识别精度不足与构建的健康因子单调性和趋势性不够理想的问题:提出一种基于集成迁移学习的滚动轴承剩余寿命预测方法。首先,利用源域数据协助标记不足的目标域数据训练具有不同激活函数的多个深度信念网络(DBN),选用预测精度最佳的DBN识别故障边界;其次,将经过训练的DBN作为特征提取器迁移到目标域,利用主成分分析(PCA)将提取的特征进行降维构建轴承健康因子,通过集成策略构建集成的健康因子;最后,采用长短时记忆神经网络作为预测模型。采用XJTU-SY滚动轴承数据集进行验证表明,提出的方法能够有效地识别故障边界和构建的健康因子更好地反映退化趋势,同时提高剩余寿命预测准确度。  相似文献   

7.
针对滚动轴承早期故障声发射信号存在信噪比低、调制成分复杂导致故障特征难以识别的问题,提出一种利用多特征指标优化的可调Q因子小波变换(TQWT)和Teager能量算子(TEO)结合的故障诊断方法。以峭度-波形信息熵指标对TQWT参数(主要是品质因子Q)进行自适应选择,分解得到一系列子频带;然后,结合峭度、峰度、稀疏值组成融合指标对子频带进行筛选,对选出的子频带降噪后重构信号;最后求得重构信号Teager能量算子解调谱,通过对解调谱分析得到轴承故障特征信息。仿真和实验数据表明:该方法能在低转速强噪声背景下提取出轴承故障声发射信号中的冲击特征并进行故障诊断。  相似文献   

8.
针对振动传感器不易安装、传统分类算法训练时间较长等问题,提出了基于美尔倒谱系数(MFCC)与主成分分析(PCA)的滚动轴承故障诊断方法。首先利用声音传感器采集滚动轴承声音信号,而后提取声音信号的MFCC特征,最后将MFCC特征作为PCA分类器的输入进行故障分类,并与反向传播神经网络(BPNN)、支持向量机(SVM)进行比较研究。实验结果表明:MFCC系数可以有效反应轴承不同工作状态下的信号特征;基于MFCC与PCA的轴承故障诊断方法能够准确、有效地识别轴承故障类型。  相似文献   

9.
付大鹏  翟勇  于青民 《机床与液压》2017,45(11):184-187
为解决在复杂噪声和工频及其倍频干扰条件下滚动轴承故障诊断问题,提高诊断准确率,进行了经验模态分解(EMD)和支持向量机(SVM)的研究,给出了相应的决策流程。基于改进的EMD分解的特征提取算法,选取故障特征明显的IMF分量进行特征提取,最大限度地滤除了低频噪声干扰,捕捉到信号的故障特征,然后将特征集输入到SVM分类器中进行识别,结果表明:该方法对于轴承故障识别具有较高的准确率,为确保轴承安全运行和快速故障诊断提供了理论支持。  相似文献   

10.
针对传统滚动轴承诊断方法在强噪声干扰下正确率低、特征选取依赖经验、模型泛化能力差的局限性,提出一种基于降噪多分支卷积神经网络(convolution neural network, CNN)和注意力机制的滚动轴承故障端到端诊断方法。通过设计多分支CNN特征提取网络,实现了包含原始信号及其频谱、时域滤波信号在内的多域特征提取;进一步引入注意力机制对各分支的输出进行权重自适应分配,在增强各域有效特征的同时抑制其无效特征对诊断结果的影响,提升模型的鲁棒性和泛化能力;最后再利用基于全局平均池化层构造的分类CNN实现滚动轴承故障的端到端诊断。对比试验证明,所设计的模型能在强噪声干扰下实现更准确的轴承故障诊断。  相似文献   

11.
陈龙  谭继文  管皓 《机床与液压》2018,46(17):164-168
滚动轴承是旋转机械设备的常用关键部件之一,其性能退化评估是机械设备状态监测与视情维修的基础和依据。为及时准确掌握滚动轴承性能退化趋势与程度,提出基于单层稀疏自编码学习和支持向量机的滚动轴承性能退化评估方法,研究能够深度挖掘数据各种潜在隐含信息的稀疏自编码学习方法以及基于时频域特征和稀疏自编码学习的轴承状态特征的提取方法;提出基于支持向量机分类算法改进的轴承性能退化评估算法,并应用到滚动轴承的性能退化评估模型中,确定了模型参数寻优的方法;最后将所获得的轴承状态特征输入到轴承性能退化评估模型,得到了轴承性能退化趋势图,并通过滚动轴承实例验证了所提出方法的实用性。  相似文献   

12.
针对滚动轴承故障诊断中故障样本不足、诊断精度与诊断效率不高的问题,提出一种基于深度卷积神经网络的滚动轴承迁移故障诊断方法。首先,通过VMD对原始振动信号进行分解,利用中心频率法确定分解个数k;其次,按照最大峭度准则筛选出最佳固有模态函数(intrinsic mode function, IMF),并对其进行连续小波变换(continuous wavelet transform, CWT)生成时频图;最后,将预处理过的时频图输入到在ImageNet数据集预训练过的深度残差网络(residual network, ResNet)模型中微调,实现故障分类识别。在某大学公开轴承数据集和题课组数据集上验证,测试精度分别达到99.60%和100%,可有效实现滚动轴承故障诊断。  相似文献   

13.
针对故障轴承的特征难以提取以及状态识别困难的问题,提出了基于经验模态分解(EMD)-多尺度排列熵(MPE)与隐马尔科夫模型(HMM)的滚动轴承故障识别方法。首先,运用EMD滤波降噪原理对滚动轴承振动信号进行降噪,而后将已降噪的信号进行多尺度排列熵分析并提取不同尺度下排列熵的较大值作为信号特征。最后,将特征信号向量输入已训练好的HMM模型进行故障类型判别。并与支持向量机(SVM)进行比较研究。实验结果表明,基于EMD-MPE与HMM的滚动轴承故障诊断方法对滚动轴承的故障状态能够进行有效地识别。  相似文献   

14.
针对传统故障诊断中,特征的有效提取依赖于降噪的效果,提出一种基于多域熵与模糊C均值聚类的故障诊断模型。采集设备运行过程中的振动信号,分别计算其小波包能量熵、功率谱熵和近似熵,其反映了振动信息在小波域、频域以及时域内的复杂程度。将其作为设备运行特征向量,通过模糊C均值聚类对设备状态进行识别。利用轴承故障实验和转子故障实验验证基于多域熵与FCM聚类的故障诊断模型,结果表明该方法地对故障类别以及故障程度的识别分类具有良好的效果。  相似文献   

15.
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。结果表明:该方法可以避免人工提取特征,获得99.94%的诊断准确率。  相似文献   

16.
为了解决滚动轴承故障特征难以提取的问题,提出了一种奇异谱分解(SSD)和多尺度排列熵(MPE)的故障特征提取方法,结合K近邻(KNN)算法识别滚动轴承故障类型。首先对滚动轴承振动信号用SSD进行分解,得到3个奇异谱分量(SSC),根据峭度最大原则选择主分析分量;然后用MPE计算主分析分量的熵值,实现滚动轴承的故障特征进行提取;最后将熵值作为特征向量输入KNN分类器中,完成滚动轴承的状态识别。将该方法应用于实验数据分析,并与VMD和MPE相结合的故障诊断方法做比较,结果证明,该方法能够有效地提取故障特征,实现故障诊断。  相似文献   

17.
徐活耀  陈里里 《机床与液压》2020,48(14):190-194
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。  相似文献   

18.
王克定  李敬兆  石晴  胡迪 《机床与液压》2023,51(22):209-214
针对实际应用中矿井通风机轴承负样本少导致故障诊断率低的问题,提出一种基于深度迁移学习的矿井通风机轴承故障诊断方法。组合卷积神经网络(CNN)与双向门控循环单元(BiGRU),并采用随机森林(RF)分类器替换CNN的Softmax层,构建CNN-BiGRU-RF诊断模型,提取轴承更深层次故障特征以便于故障识别;利用源域数据对模型训练,确定模型结构参数;最后,引入迁移学习将模型迁移至目标域,使用目标域有标签数据微调模型参数,构建目标域诊断模型进行故障分类。实验结果表明:在矿井通风机轴承负样本稀少情况下,所提方法的故障识别平均准确率在94%以上,与其他方法相比,具有更好的诊断精度和泛化能力。  相似文献   

19.
传统滚动轴承工况识别方法需要对采集到的轴承振动信号进行人工特征提取,提出一种基于自适应经验小波分解(adaptive empirical wavelet decomposition, AEWD)和深层Wasserstein网络(deep Wasserstein network, DWN)的工况识别方法。首先,改进经验小波分解频谱的分割方法,进而将滚动轴承振动信号自适应分解为本征模态分量;其次,筛选出最能反映轴承运行工况特征的分量并进行信号重构;最后,构造深层Wasserstein网络,将重构后的轴承振动信号输入DWN进行自动特征提取与工况识别。实验结果表明:AEWD结合DWN方法相比于其它深度学习方法在工况识别准确率方面更具优势。  相似文献   

20.
针对轴承故障诊断中大多现有方法特征提取复杂且诊断方法不是端到端等问题,结合深度学习理论,提出了一种基于Resnet网络(残差网络)和Attention机制(注意力机制)的轴承故障诊断方法。诊断思想是:首先,通过Resnet网络对输入的滚动轴承的一维振动时序信号进行特征提取;其次,将特征提取后的特征图经过Map-to-sequence操作将特征图转换为特征序列送入到Attention机制的GRU(门控循环单元)网络中进行预测;最后,通过分类器将预测后的结果分类输出即可得到诊断结果。实验表明,该模型对各故障类别的诊断率均在98%以上,模型诊断准确率普遍优于其他传统的诊断方法,相较于一些最近流行的基于深度学习轴承故障诊断方法效果也提升显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号