首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigated the preparation of bulk dense nanocrystalline BaTiO3 and Ni–Cu–Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO3 with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y2O3, the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograin BaTiO3 ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics.  相似文献   

3.
The addition of ThO2 to Y2O3 inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of ThO2 solute at the grain boundaries, causing a decrease in the grain-boundary mobility. The segregation of ThO2 at the grain boundaries can be inferred from the results of the microhardness and grain-growth studies presented. Further evidence for segregation is provided by quenching experiments and surface activity experiments.  相似文献   

4.
It has been well accepted that polyethylene imine (PEI) is an effective dispersant for silicon carbide (SiC) in aqueous media. However, after the addition of sintering additives (Al2O3 and Y2O3), this dispersing effect is reduced significantly. In this work, a second dispersant, citric acid, was used to resolve this problem. It was found that citric acid could decrease the slurry viscosity (without sintering additives) and enhance the PEI adsorption on SiC particle surface. The optimal amount of citric acid required to achieve a minimum viscosity for 55 vol% SiC suspensions was equal to ∼0.87 wt% (at pH ∼6.8). With the aid of citric acid, well-stabilized SiC suspensions (containing sintering additives) were realized, which exhibited slight shear thinning rheologies. After tape casting and SPS sintering, dense SiC samples were obtained with a homogeneous fine-crystalline microstructure. Results showed that citric acid was an effective dispersant for improving the dispersion of SiC particles containing sintering additives.  相似文献   

5.
6.
7.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

8.
The synthesis of dense sintered sialon with external additives selected from the system Y2O3–AIN–SiO2 is reported. The highest density (3.21 g/cm3) was achieved at 1750°C at 90 min of sintering with 5 wt% additive. The degree of sialon substitution increased with the amount of liquid; the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000°C. The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200°C. The material with more additive exhibited decreased toughness above 1000°C.  相似文献   

9.
The effect of Y2O3 addition (0–5 wt%) on the densification and properties of reactive hot-pressed alumina (Al2O3)–boron nitride composites based on the reaction between aluminum borate (2Al2O3·B2O3) and aluminum nitride (AlN) was investigated. The densification process was very sensitive to the amount of Y2O3. Compared with a low relative density of 79.3 theoretical density (TD)% for material with no Y2O3 addition, the material density reached 98.6 TD% with 0.25% Y2O3 addition. High Y2O3 additions resulted in the formation of a new phase Al5Y3O12. The grain growth of the Al2O3 matrix was promoted by the Y2O3 addition. Owing to the high density and the small Al2O3 particle size the sample with 0.25% Y2O3 addition demonstrated the highest bending strength of 540 MPa.  相似文献   

10.
Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO2–3 mol% Y2O3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO2–3 mol% Y2O3 produced mixed results. In the case of submicrometer ZrO2–3 mol% Y2O3, neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO2–3 mol% Y2O3, fast heating rates severely retarded densiflcation and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO2–3 mol% Y2O3 specimens.  相似文献   

11.
12.
13.
The eutectic composition between Y4Al2O9 and Y2O3 was determined using electron probe microanalysis (EPMA) on directionally solidified specimens with hypo- and hypereutectic compositions. The microstructures of the specimens as a function of composition differ considerably with small deviation from the eutectic composition (70.5 mol% Y2O3 and 29.5 mol% Al2O3). Based on the current results and other published data, the pseudobinary system between Al2O3 and Y2O3 is revised.  相似文献   

14.
The mechanism of parahydrogen conversion was studied on Gd2O3 and Y2O3 powders and on Gd and Y evaporated metal films at low and high temperatures (77° to 90°K and 298° to 418°K). Absolute rates of conversion are compared to theoretical values for 3 possible reaction mechanisms, and it is concluded that a paramagnetic vibrational mechanism is operative on Gd2O3, Gd, and Y. On Y2O3 the reaction rate is enhanced by additional surface paramagnetic sites. The portion of the surface which is active is ∼1 for the metals and ∼0.01 for the oxides.  相似文献   

15.
A tracer sectioning technique was used to measure cation self-diffusion coefficients in fully dense polycrystalline YaO3 and Er2Os under oxidizing conditions. The results are described by the relations for Y2O3 (1400° to 1670°C), and for Er2O3 (1400° to 1700°C). The greater activation energy for erbium diffusion in erbia may be partly attributable to a mass effect.  相似文献   

16.
Cr2O3 and ZrO2 were mixed in various ratios and pressed to form compacts, which were then sintered in carbon powder. Compacts with >30 wt% Cr2O3 were sintered to densities >98% of true density at 1500°C. This method of sintering in carbon powder can be used to prepare very dense Cr2O3-ZrO2 ceramics at a relatively low temperature, (∼1500°C) without additives.  相似文献   

17.
18.
19.
Self-diffusion coefficients of the oxygen ion in single-crystal Y2O3 were determined by the gas-solid isotope exchange technique. The results in the range 1100° to 1500°C are described by D=7.3 X 10-6 exp [-19l(kJ/mol)/RT] cm2/s. Comparison of the results with those for oxides with the fluorite-type structure indicates that the regularly arranged vacant anion sites in the C-type structure do not contribute eflectively to oxygen ion diffusion .  相似文献   

20.
The phase equilibrium relations in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3 were examined. Each system has two stable binary compounds. A 3:s molar ratio garnet-type compound exists in both systems. The 1:1 distorted perovskite structure is stable in the system Gd2O3-Fe2O3 but only metastable in the system Y2O3-AI2O3. This interesting example of metastable formation and persistence of a compound with ions of high Z/r values explains the discrepancies in the literature on the structure of the composition YA1O3. A new 2:1 molar ratio cubic phase has been found in the system Y2O3-A12O3. Since silicon can be completely substituted for aluminum in this compound, the aluminum ions are presumably in fourfold coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号