首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wall DP  Herbeck JT 《Journal of molecular evolution》2003,56(6):673-88; discussion 689-90
In this study we reconstruct the evolution of codon usage bias in the chloroplast gene rbcL using a phylogeny of 92 green-plant taxa. We employ a measure of codon usage bias that accounts for chloroplast genomic nucleotide content, as an attempt to limit plausible explanations for patterns of codon bias evolution to selection- or drift-based processes. This measure uses maximum likelihood-ratio tests to compare the performance of two models, one in which a single codon is overrepresented and one in which two codons are overrepresented. The measure allowed us to analyze both the extent of bias in each lineage and the evolution of codon choice across the phylogeny. Despite predictions based primarily on the low G + C content of the chloroplast and the high functional importance of rbcL, we found large differences in the extent of bias, suggesting differential molecular selection that is clade specific. The seed plants and simple leafy liverworts each independently derived a low level of bias in rbcL, perhaps indicating relaxed selectional constraint on molecular changes in the gene. Overrepresentation of a single codon was typically plesiomorphic, and transitions to overrepresentation of two codons occurred commonly across the phylogeny, possibly indicating biochemical selection. The total codon bias in each taxon, when regressed against the total bias of each amino acid, suggested that twofold amino acids play a strong role in inflating the level of codon usage bias in rbcL, despite the fact that twofolds compose a minority of residues in this gene. Those amino acids that contributed most to the total codon usage bias of each taxon are known through amino acid knockout and replacement to be of high functional importance. This suggests that codon usage bias may be constrained by particular amino acids and, thus, may serve as a good predictor of what residues are most important for protein fitness.  相似文献   

2.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

3.
Unequal use of synonymous codons has been found in several prokaryotic and eukaryotic genomes. This bias has been associated with translational efficiency. The prevalence of this bias across lineages is currently unknown. Here, a new method (GCB) to measure codon usage bias is presented. It uses an iterative approach for the determination of codon scores and allows the computation of an index of codon bias suitable for interspecies comparison. A server to calculate GCB-values of individual genes as well as a list of compiled results are available at . The method was applied to complete bacterial genomes. The relation of codon usage bias with amino acid composition and the choice of stop codons were determined and discussed.  相似文献   

4.
Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.  相似文献   

5.
为探究滇黄精(Polygonatum kingianum)叶绿体全基因组特征和密码子使用偏性,利用第二代测序技术对滇黄精嫩叶进行测序,再经组装与注释后得到其叶绿体基因组全序列,通过MISA、EMBOSS和CodonW等软件对滇黄精叶绿体全基因组的SSR位点、系统发育及密码子偏好性进行分析。结果表明,滇黄精完整叶绿体基因组长度为155 852 bp,基因组平均GC含量为37.7%,其大、小单拷贝区(LSC)长度分别为84 633和185 25 bp,反向重复区长度为26 347 bp,注释了132个基因,包括86个蛋白编码基因、38个tRNA基因和8个核糖rRNA基因。叶绿体基因组中共有69个SSR位点,绝大多数属于单碱基重复的A/T类型。系统发育分析表明滇黄精与格脉黄精(P. tessellatum)亲缘关系近,可能与分布地域有关。密码子偏好性分析表明,滇黄精叶绿体基因组密码子使用模式受到自然选择影响大于突变因素,最终确定9个最优密码子。因此, 滇黄精叶绿体基因组遗传结构和系统发育位置及其密码子偏倚的分析,为叶绿体基因工程研究提供理论依据。  相似文献   

6.
Codon usage patterns in cytochrome oxidase I across multiple insect orders   总被引:2,自引:0,他引:2  
Synonymous codon usage bias is determined by a combination of mutational biases, selection at the level of translation, and genetic drift. In a study of mtDNA in insects, we analyzed patterns of codon usage across a phylogeny of 88 insect species spanning 12 orders. We employed a likelihood-based method for estimating levels of codon bias and determining major codon preference that removes the possible effects of genome nucleotide composition bias. Three questions are addressed: (1) How variable are codon bias levels across the phylogeny? (2) How variable are major codon preferences? and (3) Are there phylogenetic constraints on codon bias or preference? There is high variation in the level of codon bias values among the 88 taxa, but few readily apparent phylogenetic patterns. Bias level shifts within the lepidopteran genus Papilio are most likely a result of population size effects. Shifts in major codon preference occur across the tree in all of the amino acids in which there was bias of some level. The vast majority of changes involves double-preference models, however, and shifts between single preferred codons within orders occur only 11 times. These shifts among codons in double-preference models are phylogenetically conservative.  相似文献   

7.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

8.
Plant chloroplast genes have a codon use that reflects the genome compositional bias of a high A+T content with the single exception of the highly translatedpsbA gene which codes for the photosystem II D1 protein. The codon usage of plantpsbA corresponds more closely to the limited tRNA population of the chloroplast and is very similar to the codon use observed in the chloroplast genes of the green algaChlamydomonas reinhardtii. This pattern of codon use may be an adaptation for increased translation efficiency. A correspondence between codon use of plantpsbA andChlamydomonas chloroplast genes and the tRNAs coded by the chloroplast genome, however, is not observed in all synonymous codon groups. It is shown here that the degree of correspondence between codon use and tRNA population in different synonymous groups is correlated with the second codon position composition. Synonymous groups with an A or T at the second codon position have a high representation of codons for which a complementary tRNA is coded by the chloroplast genome. Those with a G or C at the second position have an increased representation of codons that bind a chloroplast tRNA by wobble. It is proposed that the difference between synonymous groups in terms of codon adaptation to the tRNA population in plantpsbA andChlamydomonas chloroplast genes may be the result of differences in second position composition.  相似文献   

9.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

10.
以普通野生稻(Oryza rufipogon Griff.)线粒体基因组为对象,分析其蛋白质编码基因的密码子使用特征及与亚洲栽培稻(O. sativa L.)的差异,探讨其密码子偏性形成的影响因素和进化过程。结果显示:普通野生稻线粒体基因组编码序列第1、第2和第3位碱基的GC含量依次为49.18%、42.67%和40.86%;有效密码子数(Nc)分布于45.32~61.00之间,其密码子偏性较弱; Nc值仅与GC_3呈显著相关,密码子第3位的碱基组成对密码子偏性影响较大;第1向量轴上显示9.91%的差异,其与GC3s、Nc、密码子偏好指数(CBI)和最优密码子使用频率(Fop)的相关性均达到显著水平;而GC_3和GC12的相关性未达到显著水平。因此,普通野生稻线粒体基因组密码子的使用偏性主要受自然选择压力影响而形成。本研究确定了21个普通野生稻线粒体基因组的最优密码子,大多以A或T结尾,与叶绿体密码子具有趋同进化,但是与核基因组具有不同的偏好性。同义密码子相对使用度(RSCU)、PR2偏倚分析和中性绘图分析显示,普通野生稻线粒体基因功能和其密码子使用密切相关,且线粒体密码子使用在普通野生稻、粳稻(O. sativa L. subsp. japonica Kato)和籼稻(O. sativa L. subsp.indica Kato)内具有同质性。  相似文献   

11.
以普通野生稻(Oryza rufipogon Griff.)线粒体基因组为对象,分析其蛋白质编码基因的密码子使用特征及与亚洲栽培稻(O.sativa L.)的差异,探讨其密码子偏性形成的影响因素和进化过程。结果显示:普通野生稻线粒体基因组编码序列第1、第2和第3位碱基的GC含量依次为49.18%、42.67%和40.86%;有效密码子数(Nc)分布于45.32~61.00之间,其密码子偏性较弱;Nc值仅与GC3呈显著相关,密码子第3位的碱基组成对密码子偏性影响较大;第1向量轴上显示9.91%的差异,其与GC3s、Nc、密码子偏好指数(CBI)和最优密码子使用频率(Fop)的相关性均达到显著水平;而GC3和GC12的相关性未达到显著水平。因此,普通野生稻线粒体基因组密码子的使用偏性主要受自然选择压力影响而形成。本研究确定了21个普通野生稻线粒体基因组的最优密码子,大多以A或T结尾,与叶绿体密码子具有趋同进化,但是与核基因组具有不同的偏好性。同义密码子相对使用度(RSCU)、PR2偏倚分析和中性绘图分析显示,普通野生稻线粒体基因功能和其密码子使用密切相关,且线粒体密码子使用在普通野生稻、粳稻(O.sativa L.subsp.japonica Kato)和籼稻(O.sativa L.subsp.indica Kato)内具有同质性。  相似文献   

12.
The analysis on codon usage bias of GPAT gene of Camellia sinensis (L.) O. Kuntze may provide a basis for understanding the evolution relationship of C. sinensis and for selecting appropriate host expression systems to improve the expression of target genes. In the present study, the coding sequence of CsGPAT was analyzed with CodonW, CHIPS and CUSP programs, and compared with the genome of C. sinensis and GPAT genes of other 9 plant species. Our results showed that the cluster tree based on CDs could reveal the evolutional relations among the 10 plant species, whereas the cluster tree based on relative synonymous codon usage (RSCU) could not. There were 31 codons showing distinct usage differences between CsGPAT and genome of Escherichia coli, 21 between CsGPAT and yeast, but 13 between CsGPAT and Arabidopsis thaliana. But there were slightly fewer differences in codon usage between CsGPAT and A. thaliana. Therefore, the A. thaliana expression system may be more suitable for the expression of CsGPAT. These results may improve our understanding of the codon usage bias and functional studies of CsGPAT.  相似文献   

13.
Biased codon usage in many species results from a balance among mutation, weak selection, and genetic drift. Here I show that selection to maintain biased codon usage is reduced in Drosophila miranda relative to its ancestor. Analyses of mutation patterns in noncoding DNA suggest that the extent of this reduction cannot be explained by changes in mutation bias or by biased gene conversion. Low levels of variability in D. miranda relative to its sibling species, D. pseudoobscura, suggest that it has a much smaller effective population size. Reduced codon usage bias in D. miranda may thus result from the reduced efficacy of selection against newly arising mutations to unpreferred codons. [Reviewing Editor: Dr. Richard Kliman]  相似文献   

14.
 Codon bias and base composition in major histocompatibility complex (MHC) sequences have been studied for both class I and II loci in Homo sapiens and Pan troglodytes. There is low to moderate codon bias for the MHC of humans and chimpanzees. In the class I loci, the same level of moderate codon bias is seen for HLA-B, HLA-C, Patr-A, Patr-B, and Patr-C, while at HLA-A the level of codon bias is lower. There is a correlation between codon usage bias and G+C content in the A and B loci in humans and chimps, but not at the C locus. To examine the effect of diversifying selection on codon bias, we subdivided class I alleles into antigen recognition site (ARS) and non-ARS codons. ARS codons had lower bias than non-ARS codons. This may indicate that the constraint of codon bias on nucleotide substitution may be selected against in ARS codons. At the class II loci, there are distinct differences between alpha and beta chain genes with respect to codon usage, with the beta chain genes being much more biased. Species-specific differences in base composition were seen in exon 2 at the DRB1 locus, with lower GC content in chimpanzees. Considering the complex evolutionary history of MHC genes, the study of codon usage patterns provides us with a better understanding of both the evolutionary history of these genes and the evolution of synonymous codon usage in genes under natural selection. Received: 2 April 1998 / Revised: 2 September 1998  相似文献   

15.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

16.
樟树叶绿体基因组密码子偏好性分析   总被引:3,自引:0,他引:3  
秦政  郑永杰  桂丽静  谢谷艾  伍艳芳 《广西植物》2018,38(10):1346-1355
为分析樟树(Cinnamomum camphora)叶绿体基因组密码子偏好性使用模式,该研究利用CodonW、EMBOSS、R语言等软件和程序,对53条樟树叶绿体基因组密码子使用模式及偏好性进行了系统分析。结果表明:樟树叶绿体基因的有效密码子数(ENC)在36.82~59.30之间,表明密码子的偏好性较弱。相对同义密码子使用度(RSCU)分析发现RSCU>1的密码子有32个,其中28个以A、U结尾,表明第3位密码子偏好使用A和U碱基。中性绘图分析发现GC3与GC12的相关性不显著,回归曲线斜率为0.049,说明密码子偏好性主要受到自然选择的影响。ENC-plot分析发现大部分基因落在曲线的下方,同样表明选择是影响密码子偏好性的主要因素。该研究发现共有9个密码子(UUU、CUU、UCA、ACA、UAU、AAU、GAU、UGA、GGA)被鉴定为樟树叶绿体基因组的最优密码子。  相似文献   

17.
Summary We examined the codon usages in wellconserved and less-well-conserved regions of vertebrate protein genes and found them to be similar. Despite this similarity, there is a statistically significant decrease in codon bias in the less-well-conserved regions. Our analysis suggests that although those codon changes initially fixed under amino acid replacements tend to follow the overall codon usage pattern, they also reduce the bias in codon usage. This decrease in codon bias leads one to predict that the rate of change of synonymous codons should be greater in those regions that are less well conserved at the amino acid level than in the better-conserved regions. Our analysis supports this prediction. Furthermore, we demonstrate a significantly elevated rate of change of synonymous codons among the adjacent codons 5 to amino acid replacement positions. This provides further support for the idea that there are contextual constraints on the choice of synonymous codons in eukaryotes.  相似文献   

18.
为了分析美丽梧桐、云南梧桐叶绿体基因组密码子的使用偏性,该研究通过筛选美丽梧桐、云南梧桐叶绿体基因组中各52条蛋白编码序列,并利用CodonW、CUSP和SPSS软件对其密码子使用模式及偏性进行了分析。结果表明:(1)美丽梧桐、云南梧桐的GC含量分别为38.12%、38.05%,表明叶绿体基因组内富含A/T碱基。(2)有效密码子数(ENC)范围为36.91~56.46、36.55~58.04,表明多数密码子偏性较弱。(3)相对同义密码子(RSCU)分析显示,RSCU1的密码子各有29个,其中28个以A、U结尾。(4)中性绘图显示,GC_3与GC_(12)的相关性不显著,回归曲线斜率分别为0.195和0.304,说明密码子偏好性主要受到自然选择的影响。(5) ENC-plot分析中大部分基因分布于曲线的周围和下方,ENC比值多分布于-0.04~0.10之间,表明突变会影响密码子偏性的形成。此外,17、18个密码子分别被鉴定为美丽梧桐、云南梧桐的最优密码子。以上结果说明美丽梧桐、云南梧桐叶绿体基因组的密码子使用偏性可能受选择和突变共同作用,且使用模式较为相似,但具有一定的差异,可能与适应环境的进化机制有关。  相似文献   

19.
Shaokui Yi  Yanhe Li  Weimin Wang 《Genomics》2018,110(2):134-142
Neutrality plots revealed that selection probably dominates codon bias, whereas mutation plays only a minor role, in shaping the codon bias in three loaches, Misgurnus anguillicaudatus, M. mohoity, and M. bipartitus. These three species also clearly showed similar tendencies in the preferential usage of codons. Nineteen, nine, and 14 preferred codon pairs and 179, 182, and 173 avoided codon pairs were also detected in M. anguillicaudatus, M. bipartitus, and M. mohoity, respectively, and the most frequently avoided type of cP3-cA1 dinucleotide in these species was nnUAnn. The expression-linked patterns of codon usage revealed that higher expression was associated with higher GC3, lower ENC, and a smaller proportion of amino acids with high size/complexity (S/C) scores in these three species. These results elucidate selectively driven codon bias in Misgurnus species, and reveal the potential importance of expression-mediated selection in shaping the genome evolution of fish.  相似文献   

20.
糜子叶绿体基因组密码子使用偏性的分析   总被引:2,自引:0,他引:2       下载免费PDF全文
密码子使用偏性(CUB)是生物体重要的进化特征,对研究物种进化、基因功能以及外源基因表达等具有重要科学意义。本研究利用糜子(Panicum miliaceum L.)叶绿体基因组中筛选出的53条蛋白编码序列,对其密码子使用模式及偏性进行了分析。结果表明,糜子叶绿体基因的有效密码子数(ENC)在37.14~61之间,多数密码子的偏性较弱。相对同义密码子使用度(RSCU)分析发现,RSCU > 1的密码子有32个,其中28个以A、U结尾,表明第3位密码子偏好使用A和U碱基。中性分析发现,GC3与GC12的相关性不显著,回归曲线斜率为0.2129,表明密码子偏性主要受到自然选择的影响;而ENC-plot分析发现大部分基因落在曲线的上方及周围,表明突变也影响了密码子偏性的形成。进一步的对应性分析发现,第1轴为主要影响因素,解释了17.92%的差异,其与ENC、GC3S值的相关性均达到显著水平,但与CBI、GCall不相关。最后,9个密码子被鉴定为糜子叶绿体基因组的最优密码子,糜子叶绿体基因组的密码子使用偏性可能受选择和突变共同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号