首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a concept of delamination factor Fd (i.e. the ratio of the maximum diameter Dmax in the damage zone to the hole diameter D) is proposed to analyze and compare easily the delamination degree in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Experiments were performed to investigate the variations of cutting forces with or without onset of delamination during the drilling operations. The effects of tool geometry and drilling parameters on cutting force variations in CFRP composite materials drilling were also experimentally examined. The experimental results show that the delamination-free drilling processes may be obtained by the proper selections of tool geometry and drilling parameters. The effects of drilling parameters and tool wear on delamination factor are also presented and discussed.Cutting temperature has long been recognized as an important factor influencing the tool wear rate and tool life. An experimental investigation of flank surface temperatures is also presented in this paper. Experimental results indicated that the flank surface temperatures increase with increasing cutting speed but decreasing feed rate. Optimal cutting conditions are proposed to avoid damage from burning during the drilling processes.  相似文献   

2.
Alumina based ceramic cutting tool is an attractive alternative for carbide tools in the machining of steel in its hardened condition. These ceramic cutting tools can machine with high cutting speed and produce good surface finish. The wear mechanism of these ceramic cutting tools should be properly understood for greater utilization. Two types of ceramic cutting tools namely Ti[C,N] mixed alumina ceramic cutting tool and zirconia toughened alumina ceramic cutting tool are used for our investigation. The machinability of hardened steel was evaluated by measurements of tool wear, cutting forces and surface finish of the work piece. These alumina based ceramic cutting tool materials produce good surface finish in the machining of hardened steel. In this paper an attempt is made to analyse the important wear mechanisms like abrasive wear, adhesive wear and diffusion wear of these ceramic cutting tool materials and the performance of these ceramic cutting tools related to the surface finish is also discussed here.  相似文献   

3.
利用电火花穿孔技术预置表面织构,有效抑制硬态切削过程中较大切削力的产生,避免刀具磨损加剧,提高刀具使用寿命。使用CBN刀具硬态切削GCr15淬硬钢,设计关于切削深度、切削速度、进给量三因素无织构正交切削仿真模拟及试验,利用极差、方差及信噪比值法对仿真及试验数据进行分析,确定最佳切削参数组合,以及各参数对硬态切削过程中产生的切削力的影响程度。使用最佳切削参数组合,硬态切削预置表面织构的GCr15淬硬钢,观测刀具磨损情况,测量切削力,并与无织构等同切削条件下的结果进行对比分析,验证预置表面织构能够有效降低刀具磨损,提高刀具使用寿命。  相似文献   

4.
Machining of steel inherently generates high cutting temperature, which not only reduces tool life but also impairs the product quality. Conventional cutting fluids are ineffective in controlling the high cutting temperature and rapid tool wear. Further, they also deteriorate the working environment and lead to general environmental pollution. Cryogenic cooling is an environment friendly clean technology for desirable control of cutting temperature. The present work deals with experimental investigation in the role of cryogenic cooling by liquid nitrogen jet on cutting temperature, tool wear, surface finish and dimensional deviation in turning of AISI-4037 steel at industrial speed-feed combination by coated carbide insert. The results have been compared with dry machining and machining with soluble oil as coolant. The results of the present work indicate substantial benefit of cryogenic cooling on tool life, surface finish and dimensional deviation. This may be attributed mainly to the reduction in cutting zone temperature and favorable change in the chip–tool interaction. Further it was evident that machining with soluble oil cooling failed to provide any significant improvement in tool life, rather surface finish deteriorated.  相似文献   

5.
6.
The hardest component of the Martian surface is believed to be basalt rock, which is highly abrasive in nature. It will be important to operate a Martian drill under conditions that are conducive to minimal tool wear. In preparation for a Mars drilling project, this paper reports results of an experimental study of dry drilling in basalt and related tool wear. It also reports the effect of the tool wear on increasing the forces and torques required when drilling in basalt rock (on earth) using polycrystalline diamond (PCD) compact core drill inserts. Force and torque data measured for a variety of cutting conditions are shown along with experimental wear data obtained while drilling in basalt rock having different strengths. It is found that flank wear, VB, and cutting edge radius, CER, wear rates increase with rock strength, VB-wear rates and CER-wear rates exhibit opposite trends in their dependence on the remainder of the cutting parameters. For example, while VB-wear rates decrease with an increase in tool feed and spindle speed values, CER-wear rates increase with increases in tool feed and remains unchanged with increases in spindle speed. VB-wear rates decrease as the rake angle becomes more negative, while CER-wear rates increase as this occurs. It is found that basalt rock strength manifests itself via larger (smaller) generated forces/torques for rocks of harder (softer) composition. Strong correlations are found between both modes of tool wear (VB and CER) and the measured values of thrust force and torque. Equations for progressive tool wear as functions of the process variables are developed. A model for the changing drill forces and torques required by the progressive tool wear is developed for drilling in basalt.  相似文献   

7.
Effect of chamfer angle on wear of PCBN cutting tool   总被引:1,自引:0,他引:1  
In precision hard turning, a remaining problem is to minimise tool wear to maintain the accuracy of geometry and surface finish. Tool wear not only directly reduces the part geometry accuracy but also increases cutting forces drastically. The change in the cutting forces also causes instability in the tool motion, which results in more inaccuracy. PCBN cutting tools are often used in hard turning. However, they are still relatively expensive compared to ordinary carbide cutting tools. In order to attain sufficiently high production rates at minimum cost, increase of knowledge on cutting tool geometry is necessary. This article presents a study of the effect of chamfer angle on tool wear of PCBN cutting tool in the super finishing hard turning. The correlation between cutting force, tool wear and tool life were investigated. The optimised chamfer angle for PCBN cutting tool is suggested. Finally, the distribution of stresses and maximum principal stress working on the tool edge were calculated with the use of finite element method.  相似文献   

8.
The present work compares the performance of a mixed oxide ceramic tool in dry and air-cooled turning of grey cast iron. First, the study was done in the range of process parameters where dry turning provided satisfactory performance. The contours of surface roughness and tool life were generated with the help of trained neural networks. A novel procedure of neural network training is used in this work. The study was extended to the range in which dry turning performed poorly in terms of tool life. Tool wear, surface roughness of the machined job and forces and vibration during the cutting were studied. It was observed that air-cooling significantly reduces the tool wear at high cutting speed. At higher cutting speeds, where the dry turning performs very poorly, the air-cooled turning provides an improved surface finish also apart from the reduction in tool wear. In all the cases, the cutting and feed forces get reduced in air-cooling. Thus, air-cooled turning of grey cast iron with mixed oxide ceramic tools offers a promising environment-friendly option.  相似文献   

9.
A review of cryogenic cooling in machining processes   总被引:1,自引:0,他引:1  
The cooling applications in machining operations play a very important role and many operations cannot be carried out efficiently without cooling. Application of a coolant in a cutting process can increase tool life and dimensional accuracy, decrease cutting temperatures, surface roughness and the amount of power consumed in a metal cutting process and thus improve the productivity. In this review, liquid nitrogen, as a cryogenic coolant, was investigated in detail in terms of application methods in material removal operations and its effects on cutting tool and workpiece material properties, cutting temperature, tool wear/life, surface roughness and dimensional deviation, friction and cutting forces. As a result, cryogenic cooling has been determined as one of the most favourable method for material cutting operations due to being capable of considerable improvement in tool life and surface finish through reduction in tool wear through control of machining temperature desirably at the cutting zone.  相似文献   

10.
PCBN is the dominant tool material for hard turning applications due to its high hardness, high wear resistance, and high thermal stability. However, the inflexibility of fabricating PCBN inserts with complex tool geometries and the prohibitive cost of PCBN inserts are some of the concerns in furthering the implementation of CBN based materials for hard turning. In this paper, we present the results of a thorough investigation of cBN plus TiN (cBN–TiN) composite-coated, commercial grade, carbide inserts (CNMA 432, WC–Co (6% Co)) for hard turning applications in an effort to address these concerns. The effect of cutting speed and feed rate on tool wear (tool life), surface roughness, and cutting forces of the cBN–TiN coated carbide inserts was experimented and analyzed using analysis of variance (ANOVA) technique, and the cutting conditions for their maximum tool life were evaluated. The tool wear, surface roughness, and cutting forces of the cBN–TiN coated and commercially available PCBN tipped inserts were compared under similar cutting conditions. Both flank wear and crater wear were observed. The flank wear is mainly due to abrasive actions of the martensite present in the hardened AISI 4340 alloy. The crater wear of the cBN–TiN coated inserts is less than that of the PCBN inserts because of the lubricity of TiN capping layer on the cBN–TiN coating. The coated CNMA 432 inserts produce a good surface finish (<1.6 μm) and yield a tool life of about 18 min per cutting edge. In addition, cost analysis based on total machining cost per part was performed for the comparison of the economic viability between the cBN–TiN coated and PCBN inserts.  相似文献   

11.
High strength steel 30Cr3SiNiMoVA (30Cr3) is usually used to manufacture the key parts in aviation industry owing to its outstanding mechanical properties. However, 30Cr3 has poor machinability due to its high strength and high hardness. Hard milling is an efficient way in machining high strength steels. This paper investigated hard milling of 30Cr3 using a PVD-AlTiN coated cemented carbide tool with regard to cutting forces, surface roughness, chip formation and tool wear, respectively. The experimental results indicated that the increase of cutting speed from 70 to 110 m/min leads to direct reduction of cutting forces and improvement of surface finish, while both feed rate and depth of cut have negative effect on surface finish. The occurrence of oxidation on chip surfaces under high cutting temperature makes the chips show different colors which are strongly influenced by cutting speed. Saw-toothed chips were observed with the occurrence of the thermo-plastic instability within the primary shear zone. Micro-chipping and coating peeling were confirmed to be the primary tool failure modes. Serious abrasion wear and adhesive wear with some oxidative wear were confimed to be the main wear mode in hard milling of 30Cr3.  相似文献   

12.
Performance evaluation of endrills   总被引:1,自引:0,他引:1  
This paper evaluates the performance of a relatively new type of drill called an endrill which is a cross between a drill and an endmill. Investigations into the effects of its cutting conditions on the drilling forces, surface finish, drill wear and hole oversize were carried out. It was found that endrills produced better quality holes than conventional twist drills, better surface finish and less oversize of the holes. Hence, with proper feed, speed and flow rate of the pressurized flushing coolant, a good finish of about Ra = 1 μm can be attained without reaming. Thus, the productivity of finished holes can be remarkably improved. Compared to twist drills, lower torque and thrust were observed which yielded improved tool life and reduced power consumption. No “walking phenomenon” was observed when this kind of drill was used and the amount of hole oversize was found to average about 0.7% of the drill diameter as compared to 1.6% when twist drills were used. Finally, general equations for the drill torque and thrust were derived from the experimental results.  相似文献   

13.
The paper is focussed on the effects produced by cutting operations on workpiece surface finish and tool wear. To this end, finish turning of AISI 420B stainless-steel was carried out under wet, minimum quantity of lubricant and dry cutting conditions, using both conventional and wiper technology inserts, on turning centres equipped with beds made in polymer concrete and cast iron. The workpiece surface finish and tool wear versus cutting volume were measured, and the results analysed and discussed in detail. The most significant results were: (i) the lubrication-cooling technique does not significantly affect the tool wear, whilst wet cutting produces the worst surface finish, (ii) the wiper inserts allow obtaining of the best surface finish, and (iii) the use of polymer concrete bed leads to an improved behaviour in terms of tool wear and surface roughness.  相似文献   

14.
This paper is concerned with the experimental and numerical study of face milling of Ti-6Al-4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool-chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.  相似文献   

15.
Cutting forces generated using CBN tools have been evaluated when cutting steel being hardened to 45–55 HRC. Radial thrust cutting force was the largest among the three cutting force components and was most sensitive to the changes of cutting edge geometry and tool wear. The surface finish produced by CBN tools was compatible with the results of grinding and was affected by cutting speed, tool wear and plastic behaviour of the workpiece material.  相似文献   

16.
The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Application of cutting fluids changes the performance of machining operations because of their lubrication, cooling, and chip flushing functions. But the conventional cutting fluids are not that effective in such high production machining, particularly in continuous cutting of materials likes steels. Minimum quantity lubrication (MQL) presents itself as a viable alternative for turning with respect to tool wear, heat dissipation, and machined surface quality. This study compares the mechanical performance of MQL to completely dry lubrication for the turning of AISI-1040 steel based on experimental measurement of cutting temperature, chip reduction coefficient, cutting forces, tool wears, surface finish, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip–tool interaction, reduced tool wears, surface roughness, and dimensional deviation.  相似文献   

17.
In machining of parts, surface quality is one of the most specified customer requirements. Major indication of surface quality on machined parts is surface roughness. Finish hard turning using Cubic Boron Nitride (CBN) tools allows manufacturers to simplify their processes and still achieve the desired surface roughness. There are various machining parameters have an effect on the surface roughness, but those effects have not been adequately quantified. In order for manufacturers to maximize their gains from utilizing finish hard turning, accurate predictive models for surface roughness and tool wear must be constructed. This paper utilizes neural network modeling to predict surface roughness and tool flank wear over the machining time for variety of cutting conditions in finish hard turning. Regression models are also developed in order to capture process specific parameters. A set of sparse experimental data for finish turning of hardened AISI 52100 steel obtained from literature and the experimental data obtained from performed experiments in finish turning of hardened AISI H-13 steel have been utilized. The data sets from measured surface roughness and tool flank wear were employed to train the neural network models. Trained neural network models were used in predicting surface roughness and tool flank wear for other cutting conditions. A comparison of neural network models with regression models is also carried out. Predictive neural network models are found to be capable of better predictions for surface roughness and tool flank wear within the range that they had been trained.Predictive neural network modeling is also extended to predict tool wear and surface roughness patterns seen in finish hard turning processes. Decrease in the feed rate resulted in better surface roughness but slightly faster tool wear development, and increasing cutting speed resulted in significant increase in tool wear development but resulted in better surface roughness. Increase in the workpiece hardness resulted in better surface roughness but higher tool wear. Overall, CBN inserts with honed edge geometry performed better both in terms of surface roughness and tool wear development.  相似文献   

18.
In the present study, microwave treatment has been used to enhance the tribological properties of single-point tungsten carbide (WC) cutting tool inserts such as wear resistance and hardness. The tool hardness and cutting parameters were considered to evaluate the performance of microwave-treated WC inserts in turning operation. The optimum cutting parameters were identified using response surface method (RSM)-based desirability approach. The relationship between cutting parameters and output responses, viz. flank wear, cutting force and surface roughness, was developed using the RSM. The investigations revealed that the increase in tool hardness due to complex carbide formation results in a significant reduction in tool wear, cutting forces and improvement in the surface finish of workpiece. Further, the statistical models results were validated with the experimental results. Metallurgical properties of treated and untreated tool inserts were analyzed using scanning electron microscope, x-ray diffraction method and Vickers microhardness tests. The results highlighted the importance of microwave treatment in enhancing the machining performance in turning operation.  相似文献   

19.
This paper presents the performance of the minimum quantity lubrication (MQL) technique in near micro-milling with respect to dry cutting on the basis of tool wear, surface roughness and burr formation. The effects of tool materials, oil flow rate and air flow rate on tool performance in MQL cutting are also studied. It is found that the application of MQL will significantly improve the tool life, surface roughness and burr formation compared to those in dry cutting based on slotting tests with micro-end mills on a meso-scale machine tool. It is also observed that the values of surface roughness are close related to the tool-wear conditions in micro-cutting. Based on the experimental results, it is presumed that the maximum allowable tool flank wear of the 600-μm micro-tool is 80 μm while the surface finish quickly deteriorates after the tool flank wear reaches 80 μm and the tool breaks soon after the tool wear reaches 100 μm. The optimal lubrication conditions in this study are oil flow rate of 1.88 ml/h and air flow rate of 40 l/min. It is also found that the air flow rate has a more significant influence on tool life than the oil flow rate under MQL conditions in this study.  相似文献   

20.
Laser-assisted machining of Inconel 718 with an economic analysis   总被引:2,自引:0,他引:2  
Superalloys have high strengths at elevated temperatures, which make them attractive toward various applications and also make these materials difficult to machine at room temperature due to excessive tool wear and poor surface finish. Laser-assisted machining (LAM) offers the ability to machine superalloys more efficiently and economically by providing the local heating of the workpiece prior to material removal by a single point cutting tool.An existing transient, three-dimensional heat transfer model is modified for modeling LAM of Inconel 718. Suitable coating conditions are determined for increasing the laser absorptivity in metals and an approximate absorptivity value is determined. The thermal model is validated in axial and circumferential directions by temperature measurement using an infrared camera.The machinability of Inconel 718 under varying conditions is evaluated by examining tool wear, forces, surface roughness, and specific cutting energy. With increasing material removal temperature from room temperature to 620 °C, the benefit of LAM is demonstrated by a 25% decrease in specific cutting energy, a 2–3-fold improvement in surface roughness and a 200–300% increase in ceramic tool life over conventional machining. Moreover, an economic analysis shows significant benefits of LAM of Inconel 718 over conventional machining with carbide and ceramic inserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号