首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to apply carbon/carbon composites (C/Cs) to various hot structures, secondary bonding techniques effective at elevated temperatures are frequently required. In the present study, carbon bonding between lamination type C/Cs was formed by the carbonation of polymer adhesive, and the strength of the bonding was evaluated at temperatures up to 2273 K in a vacuum using the double-notched shear method. The results revealed that bonding strength increased with increasing temperature and became higher than the inter-laminar shear strength of the substrate C/C when the bonding layer was thin. The enhancement of carbon bonding strength with increasing temperature was shown to be caused mainly by the evaporation of absorbed gases, probably water, up to temperatures of 1800 K with a slight additional contribution of thermal residual stress. It was also shown that heat treatment at higher temperatures made the bonding stronger.  相似文献   

2.
Ruiying Luo  Xiulan Huai  Haiying Ding 《Carbon》2003,41(14):2693-2701
The effect of high temperature heat treatment on the tribological behavior of carbon/carbon (C/C) composites has been investigated. C/C composite preforms were made from 1K PAN plain carbon cloth, and densified using rapid directional diffusion (RDD) CVI processes. Four specimens treated at 1800, 1800+2000, 2000, and 2300 °C, respectively, were prepared. A ring-on-ring specimen configuration was used to simulate aircraft brakes. The brake initial angular velocity ranged from 1800 to 7500 rpm (6.2-26.0 m s−1 average linear sliding velocity). The specific pressure and moment of inertia were 392-784 kPa and 0.25-0.31 kg m2, respectively (1.9-42.3 MJ m−2 kinetic energy loading per unit friction surface area). The results showed that the stability of the brake moment-time curves increased with increasing heat treatment temperature (HTT) for the four composites, and those treated at 2300 °C possessed the lowest initial brake moment peak ratio values (from 1.1 to 1.3). The high degree of graphitization and low shear forces of the matrix carbon resulting from the high HTT could allow friction films to develop and reduce those values under the present brake conditions. The friction coefficients of four RDD CVI C/C composites decreased with an increase in specific pressure. The resulting changes in the friction coefficient of the four composites due to the specific pressure changes have basically nothing to do with the interface temperature under those conditions. According to the practical brake conditions, the friction properties of RDD CVD C/C composites could be improved by regulating the structure of the brake discs, changing the specific pressure exerted on the discs and the heat treatment. The linear wear rates of the four materials increased with increasing HTT. The composites treated at 2000 °C had both high enough friction coefficients and the lower linear wear rates. The different heat treatment methods at 2000 °C had no obvious effect on the friction and wear properties of RDD CVI C/C composites.  相似文献   

3.
The static mechanical responses of two- and three-dimensionally reinforced carbon/carbon composites (2D- and 3D-C/Cs) were compared. The mechanical properties examined included tensile and shear stress-strain (S-S) relations, and fracture behavior using compact tension and double edge notch configurations. Compared with 2D-C/Cs, 3D-C/Cs were shown to possess a similar tensile S-S relation, lower shear strength, higher ultimate deformation in shear, and much higher fracture resistance. The differences in shear and fracture resistance were shown to be derived from a weaker fiber/matrix interface and weaker bonding between fiber bundles in the 3D-C/Cs. These weak interface characteristics of 3D-C/Cs are due to the high value of residual stresses caused by the three-dimensional fiber constraint of 3D-C/Cs.  相似文献   

4.
Unidirectional carbon fiber reinforced fused silica (1D-Cf/SiO2) composite was prepared by slurry infiltration and hot-pressing. The flexural strength and the coefficient of thermal expansion (CTE) at room and liquid nitrogen temperature (77 K) were investigated. The flexural strength of the composite tested at 77 K was 878 MPa, higher than that 667 MPa at room temperature. Moreover, the CTE of the composite at 77 K was higher than that at room temperature. Due to the difference of CTE between the matrix and fiber, gaps appeared at the fiber/matrix interface of as-prepared specimens. However, they may be healed up because of the thermal expansion of carbon fiber at 77 K. It led to a higher interfacial sliding resistance and changed the weak fiber/matrix interfacial bonding. Thus, it was helpful for the load transfer from matrix to fiber.  相似文献   

5.
Carbon/Carbon (C/C) composites are expected to serve as structural materials over 2800 ℃. Experiments under ultra-high temperatures (UHT) are critical and demanding. In this paper, we established the UHT compressive experiment technique using simultaneous Joule heating and compressive loading fixtures. The specimen was designed and validated to achieve uniform temperature and strain at the gauge section. Compressive strengths and failure behaviors of three-directional (3D) needled, 3D woven, and four-directional (4D) woven C/C composites under UHT up to 3100 ℃ were investigated. The failure modes and mechanism of strength differences were illustrated through mesoscopic surface morphologies. Results showed that the dog-bone-shaped specimen avoided crushing at loading ends and exhibited failure at gauge sections. Temperatures with peak compressive strengths for 3D and 4D woven C/C composites were determined. Differences between the C/C composites were related to heat treatment temperatures. The sublimation phenomenon was observed for 4D woven C/C composites over 3000 ℃, degrading the compressive strengths by over 50%.  相似文献   

6.
S.R. Dhakate  O.P. Bahl 《Carbon》2003,41(6):1193-1203
The present investigation describes the quantitative measurement of surface functional groups present on commercially available different PAN based carbon fibers, their effect on the development of interface with resol-type phenol formaldehyde resin matrix and its effect on the physico-mechanical properties of carbon-carbon composites at various stages of heat treatment. An ESCA study of the carbon fibers has revealed that high strength (ST-3) carbon fibers possess almost 10% reactive functional groups as compared to 5.5 and 4.5% in case of intermediate modulus (IM-500) and high modulus (HM-45) carbon fibers, respectively. As a result, ST-3 carbon fibers are in a position to make strong interactions with phenolic resin matrix and HM-45 carbon fibers make weak interactions, while IM-500 carbon fibers make intermediate interactions. This observation is also confirmed from the pyrolysis data (volume shrinkage) of the composites. Bulk density and kerosene density more or less increase in all the composites with heat treatment up to 2600 °C. It is further observed that bulk density is minimum and kerosene density is maximum upon heat treatment at 2600 °C in case of ST-3 based composites compared to HM-45 and IM-500 composites. It has been found for the first time that the deflection temperature (temperature at which the properties of the material start to decrease or increase) of flexural strength as well as interlaminar shear strength is different for the three composites (A, B and C) and is determined by the severity of interactions established at the polymer stage. Above this temperature, flexural strength and interlaminar shear strength increase in all the composites up to 2600 °C. The maximum value of flexural strength at 2600 °C is obtained for HM-45 composites and that of ILSS for ST-3 composites.  相似文献   

7.
Oxidation kinetics and mechanisms of a 2D-C/C composite   总被引:1,自引:0,他引:1  
The isothermal oxidation of a 2D-C/C composite was investigated by thermogravimetric analysis in the temperature range of 745–900 °C and SEM observation. The model-free, model-fitting and reduced-time plot methods were applied to oxidation kinetic analysis. SEM investigation shows that oxidation starts from the fiber/matrix interfaces, and matrix carbon is oxidized much more rapidly than the carbon fibers. According to the model-free curve, the oxidation temperatures are divided into two ranges: lower temperatures (745–800 °C) and higher temperatures (850–900 °C). The apparent activation energy and oxidation controlling mechanisms in different temperature ranges are obtained. Furthermore, the trend of the oxidation rate with weight loss or temperature ranges is discussed by the combination of microstructure and mechanisms of oxidation of 2D-C/C composite.  相似文献   

8.
L.M Manocha  S Manocha  A.A Ogale 《Carbon》2003,41(7):1425-1436
Carbon/carbon composites were prepared with ribbon-shape pitch-based carbon fibers serving as reinforcement and thermosetting PFA resin and thermoplastic pitch as matrix precursors. The composites were heat treated to 1000, 1600 and 2700 °C. Microstructural transformations taking place in the reinforcement, carbon matrix, and the interface were studied using polarized optical and scanning electron microscopy. The fiber/matrix bond and ordering of the carbon matrix in heat-treated composites was found to vary depending on the heat treatment temperature of the fibers. Stabilized fiber cleaved during carbonization of resin-derived composites. In contrast, fibers retain their shape during carbonization of pitch matrix composites. Optical activity was observed in composites made with carbonized fibers; the extent decreases with increased heat treatment of the fibers. Studies at various heat treatment temperatures indicate that ribbon-shape fibers developed ordered structure at 1600 °C when co-carbonized with thermosetting resin or thermoplastic pitches.  相似文献   

9.
Multiple quasi three-dimensioned carbon fibre preforms with disk-like shape were simultaneously densified by a directional flow thermal gradient CVI process. The effects of infiltration conditions, including temperature (ranging from 850 to 1050 °C), temperature gradient (5 and 10 °C/mm), pressure (2.5, 5.0, 7.5 and 9.5 kPa) and the type of carrier gas (N2 or H2), on the densification behavior of the resultant carbon/carbon composites were investigated. The results showed that lower temperatures (below 900 °C), a larger temperature gradient and higher pressure are favorable for higher average bulk density and homogeneous infiltration. Carbon/carbon composites disks with an average bulk density of 1.78 g/cm3 were achieved in one CVI cycle at a total pressure of 9.5 kPa. It was also found that adding N2 carrier gas has no pronounced influence on the densification of the preforms. As compared to N2, H2 had positive effects on the densification of the preforms for temperatures above 900 °C, but it had negative effects on the densification when the control temperature was as low as 850 °C.  相似文献   

10.
Unidirectional carbon fiber reinforced geopolymer composite (Cuf/geopolymer) is prepared by a simple ultrasonic-assisted slurry infiltration method, and then heat treated at elevated temperatures. Effects of high-temperature heat treatment on the microstructure and mechanical properties of the composites are studied. Mechanical properties and fracture behavior are correlated with their microstructure evolution including fiber/matrix interface change. When the composites are heat treated in a temperature range from 1100 to 1300 °C, it is found that mechanical properties can be greatly improved. For the composite heat treated at 1100 °C, flexural strength, work of fracture and Young's modulus reach their highest values increasing by 76%, 15% and 75%, respectively, relative to their original state before heat treatment. The property improvement can be attributed to the densified and crystallized matrix, and the enhanced fiber/matrix interface bonding based on the fine-integrity of carbon fibers. In contrast, for composite heat treated at 1400 °C, the mechanical properties lower substantially and it tends to fracture in a very brittle manner owing to the seriously degraded carbon fibers together with matrix melting and crystal phases dissolve.  相似文献   

11.
A hot-pressing reactive sintering (HPRS) technique was explored to prepare SiC coating for protecting carbon/carbon (C/C) composites against oxidation. The microstructures of the coatings were analyzed by X-ray diffraction and scanning electron microscopy. The results show that, SiC coating obtained by HPRS has a dense and crack-free structure, and the coated C/C lost mass by only 1.84 wt.% after thermal cycles between 1773 K and room temperature for 15 times. The flexural strength of the HPRS-SiC coated C/C is up to 140 MPa, higher than those of the bare C/C and the C/C with a SiC coating by pressure-less reactive sintering. The fracture mode of the C/C composites changes from a pseudo-plastic behavior to a brittle one after being coated with a HPRS-SiC coating.  相似文献   

12.
Steven Seghi  James Lee 《Carbon》2005,43(10):2035-2043
This paper describes the fabrication of high density (ρ ∼ 1.75 g/cc) composites containing a hybrid (carbon and boron nitride), or complete boron nitride matrix. The composites were reinforced with either chopped or 3D needled carbon fibers. The boron nitride was introduced via liquid infiltration of a borazine oligomer that can exhibit liquid crystallinity. The processing scheme was developed for the chopped carbon fiber/boron nitride matrix composites (C/BN) and later applied to the 3D carbon fiber reinforced/boron nitride matrix composites (3D C/BN). The hybrid matrix composites were produced by infiltrating the borazine oligomer into a low density 3D needled C/C composite to yield 3D C/C-BN. In addition to achieving high densities, the processing scheme yielded d002 spacings of 3.35 Å, which afforded boron nitride with excellent hydrolytic stability. The friction and wear properties of the composites were explored over the entire energy spectrum for aircraft braking using an inertial brake dynamometer. The C/BN composites outperformed both the previously reported C/C-BN and chopped fiber reinforced C/C. The high density 3D C/BN performed as well as both the 3D C/C and the C/BN. The 3D C/C-BN provided outstanding wear resistance, incurring nearly zero wear across the entire testing spectrum. The coefficient of friction was relatively stable with respect to energy level, varying from 0.2 to 0.3.  相似文献   

13.
To obtain light and tough materials with high thermal conductivity, AlN ceramic bonded carbon (AlN/CBC) composites were fabricated at temperatures from 1600 to 1900 °C in a short period of 5 min by the spark plasma sintering technique. All AlN/CBCs (20 vol% AlN) have unique microstructures containing carbon particles of 15 μm in average size and continuous AlN boundary layers of 0.5-3 μm in thickness. With an increase in sintering temperature, AlN grains grow and anchor into carbon particles, resulting in the formation of a tight bonding layer. The AlN/CBC sintered at 1900 °C exhibited a light weight (2.34 g/cm3), high bending strength (100 MPa), and high thermal conductivity (170 W/mK).  相似文献   

14.
The effect of heat treatment on microstructure of a plain-weave carbon fabric reinforced carbon-carbon composite with phenolformaldehyde-derived carbon matrix was investigated by X-ray diffraction. The diffraction patterns were analysed by the least-square fitting program Carbonxs. After heat treatment from 1000 to 2800 °C the interplanar distance of (002) planes decreased from 3.488 to 3.420 Å and the lattice parameter in basal plane increased from 2.440 to 2.464 Å, respectively. Simultaneously, the coherent block size in the basal plane directions increased from 18 to 54 Å, which was accompanied by an increase of the fraction of organised carbon atoms from 0.50 to 0.85. The 002 diffraction profile of the composite was much narrower than the sum of peaks of the matrix and fabric alone. This can probably be caused by a better crystallographic ordering (or by a partial graphitisation) of the matrix in the composite. On the other hand, the composite Young’s modulus slightly decreased with the treatment temperature increasing from 2200 to 2800 °C in spite of the established strong improvement of fibre crystallinity and, therefore, fibre modulus. The mechanisms diminishing the modulus of composite (e.g. partial matrix graphitisation at the fibre/matrix interface and decreasing fibre/matrix contact area) probably prevailed over the increasing contribution of the fibre modulus.  相似文献   

15.
S.R. Dhakate  R.B. Mathur  O.P. Bahl 《Carbon》1997,35(12):1753-1756
Coal tar pitch matrix was modified by addition of iron oxide in different proportions i.,e. 0, 1, 3 and 5% by weight. The matrix was used to develop carbon fibre reinforced composites heat treated to 1000 and 2500 °C, respectively. The catalytic effect of iron oxide was ascertained by measuring the physical properties viz. the inter layer spacing, thermal conductivity and flexural strength of the composites. Low concentrations of the catalyst resulted in improvement in the thermal conductivity of composites from 68 × 10−2 W/m K for 0% to 127 × 10−2 W/m K for 1% iron oxide concentration. The flexural strength of graphitized composites, however, showed a remarkable increase from 325 MPa for 0% to 450 MPa for 5% iron oxide concentrations. The increase in flexural strength was probably due to the development of large numbers of grain boundaries whereas the increase in the thermal conductivity was most likely due to larger crystallite size i.e. decreases in the interlayer spacing (d002) of the graphitized composites.  相似文献   

16.
The high temperature compressive strength behavior of zirconium diboride (ZrB2)-silicon carbide (SiC) particulate composites containing either carbon powder or SCS-9a silicon carbide fibers was evaluated in air. Constant strain rate compression tests have been performed on these materials at room temperature, 1400, and 1550 °C. The degradation of the mechanical properties as a result of atmospheric air exposure at high temperatures has also been studied as a function of exposure time. The ZrB2-SiC material shows excellent strength of 3.1 ± 0.2 GPa at room temperature and 0.9 ± 0.1 GPa at 1400 °C when external defects are eliminated by surface finishing. The presence of C is detrimental to the compressive strength of the ZrB2-SiC-C material, as carbon burns out at high temperatures in air. As-fabricated SCS-9a SiC fiber reinforced ZrB2-SiC composites contain significant matrix microcracking due to residual thermal stresses, and show poor mechanical properties and oxidation resistance. After exposure to air at high temperatures an external SiO2 layer is formed, beneath which ZrB2 oxidizes to ZrO2. A significant reduction in room temperature strength occurs after 16-24 h of exposure to air at 1400 °C for the ZrB2-SiC material, while for the ZrB2-SiC-C composition this reduction is observed after less than 16 h. The thickness of the oxide layer was measured as a function of exposure time and temperatures and the details of oxidation process has been discussed.  相似文献   

17.
To study phase formation up to 2300 K, tungsten carbide–cobalt (WC–Co) samples were exposed to concentrated solar radiation in hydrogen plasma. The reducing atmosphere was a non-equilibrium hydrogen plasma created in a microwave cavity at the nominal power of 1000 W. The dissociation fraction of hydrogen molecules in plasma was of the order of 10% assuring for almost optimal reduction of any oxide that could be formed on the surface of samples due to the residual atmosphere. Micro-structural characterization was performed by XRD and AES depth profiling. The results showed the appearance of Co6W6C phase at the temperature of 1050±50 K. This phase almost vanished at the temperature of 1300±90 K and was replaced by the Co3W3C phase. This phase vanished at 1690±150 K where only WC and Co peaks were detected by XRD. The AES depth profiles showed enrichment of the surface film with Co at elevated temperatures. At extremely high temperature of 2300 K, the Co vanished from the surface layer but remained in crystalline form in the bulk material. SEM imaging showed an evolution of the material crystallinity up to perfectly recognizable crystals of the dimension of approx. 1 μm at the maximum temperature. The results are explained by mobility of Co atoms, surface segregation and sublimation at very high temperature.  相似文献   

18.
W.G Zhang 《Carbon》2003,41(12):2325-2337
Chemical vapor infiltration of a 2D carbon fiber preform with a 0/0/90/90° fiber architecture and a fiber volume fraction of 22.5% was investigated as a function of methane pressure at various temperatures as well as a function of infiltration time at constant pressure. Inside-outside densification was obtained at the most attractive temperature of 1095 °C up to 29 kPa resulting in a maximum bulk density of 1.84 g cm−3 and a matrix density of 2.17 g cm−3, which corresponds to high-textured carbon. Texture formation can be perfectly explained with the earlier proposed particle-filler model. Studies at increasing infiltration times suggest a recrystallization of carbon deposited in the early stages of the infiltration.  相似文献   

19.
Compressive strength of 2D-C/SiC composite was investigated from room temperature(RT) to 1600?°C at present work. Damage evolution was investigated by conducting loading/unloading tests at RT and the damage mechanisms were elucidated by observing the fracture morphology. It is found that compressive strength of 2D-C/SiC was retained until 1200?°C and then decreased with increasing temperature. The variation of compressive strength is closely related to the degradation in matrix modulus. The compressive damage of 2D-C/SiC starts at the buckling of 0° fiber and is followed by opening and closing of original pores, initiation and growth of longitudinal interbundle cracks, separation of 90° fiber bundles by longitudinal cracks, matrix cracking from intrabundle pores, propagation of matrix cracks into 0° fiber bundles, connection of cracks in 0° fiber bundles and longitudinal cracks in 90° fiber bundles.  相似文献   

20.
Jun Li  Yanhong Bi  Qiao Xiang  Chen Lin  Yunfeng Zhang  Na An 《Carbon》2008,46(14):1957-1965
A short carbon fiber reinforced adhesive for bonding carbon/carbon composites was developed. We found that when the thickness of the bonding layer was 80 μm, the concentration of short carbon fiber was 0.2 wt.%, and the heat-treatment temperature was 1000 °C, the adhesive could operate below 1700 °C and endure 20 times of thermal shock circles at 1500 °C. Finite element and micrograph analysis indicated that the bonding strength was larger than the interlaminar shear strength of carbon/carbon substrate, so that the fracture did not occur in the bonding layer but the carbon/carbon substrate. Weibull distribution analysis results showed that the Weibull modulus was 21.56 and the bonding strength was 11.43 MPa. We investigated that short carbon fiber could advance the tensile strength and thermal shock resistance of the adhesive, release residual stress and inhibit extension of micro-crack in the bonding layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号