首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

2.
Although graphite materials have been applied as commercial anodes in lithium‐ion batteries (LIBs), there still remain abundant spaces in the development of carbon‐based anode materials for sodium‐ion batteries (SIBs). Herein, an electrospinning route is reported to fabricate nitrogen‐doped carbon nanofibers with interweaved nanochannels (NCNFs‐IWNC) that contain robust interconnected 1D porous channels, produced by removal of a Te nanowire template that is coelectrospun within carbon nanofibers during the electrospinning process. The NCNFs‐IWNC features favorable properties, including a conductive 1D interconnected porous structure, a large specific surface area, expanded interlayer graphite‐like spacing, enriched N‐doped defects and active sites, toward rapid access and transport of electrolyte and electron/sodium ions. Systematic electrochemical studies indicate that the NCNFs‐IWNC exhibits an impressively high rate capability, delivering a capacity of 148 mA h g?1 at current density of as high as 10 A g?1, and has an attractively stable performance over 5000 cycles. The practical application of the as‐designed NCNFs‐IWNC for a full SIBs cell is further verified by coupling the NCNFs‐IWNC anode with a FeFe(CN)6 cathode, which displays a desirable cycle performance, maintaining acapacity of 97 mA h g?1 over 100 cycles.  相似文献   

3.
Carbonaceous materials have attracted immense interest as anode materials for Na‐ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na‐storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O‐dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g?1 at 100 mA g?1 after 100 cycles and retaining a capacity of 240 mAh g?1 at 2 A g?1 after 2000 cycles. The NOC composite with 3D well‐defined porosity and N,O‐dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O‐dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells.  相似文献   

4.
SnO2 has been considered as a promising anode material for lithium‐ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low‐reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N‐doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self‐polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N‐doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC‐2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g?1 at 0.1 A g?1 after 100 cycles and a long life‐span with a capacity of 753 mAh g?1 after 1500 cycles at 1 A g?1. The SnO2/NC‐2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g?1 at 1 A g?1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots.  相似文献   

5.
Alloy anodes have shown great potential for next‐generation lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene‐protected 3D Sb‐based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic‐assembling and subsequent confinement replacement strategy. As binder‐free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g−1 at 100 mA g−1 and 295 mAh g−1 at 1000 mA g−1, and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g−1. As for sodium storage properties, the reversible capacities of 517 mAh g−1 at 50 mA g−1 and 315 mAh g−1 at 1000 mA g−1, the capacity retention of 305 mAh g−1 after 100 cycles at 300 mA g−1 are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high‐stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder‐free anodes for LIBs and SIBs.  相似文献   

6.
Cellulose is a promising natural bio‐macromolecule due to its abundance, renewability and low cost. Here, a new method is developed to prepare pre‐sodiated carbonaceous anodes for sodium‐ion batteries (SIBs) from cellulose nanofibers (CNFs) under microwave irradiation for potential ultrafast and large‐scale manufacturing. While direct carbonization of CNFs through microwave treatment is usually impossible due to the weak microwave absorption of CNFs, it is found that a small amount of reduced graphene oxide (rGO) can act as an effective initiator. Microwaving rGO releases extremely high energy, giving rise to local ultrahigh temperature as well as ultrahigh heating rate, which then induces the fast carbonization of CNFs and the production of pre‐sodiated carbonaceous materials within seconds. The sodium in the carbonaceous materials, introduced from the carbonization of CNFs containing sodium‐ion carboxyl, offer favorable spaces for sodiation/desodiation, which improves the electrochemical performance of the sodium‐inserted carbonaceous anode. When the microwaved rGO‐CNF (MrGO‐CNF) is used as an anode for SIBs, a high initial capacity of 558 mAh g?1 is delivered and the capacity of 340 mAh g?1 remains after 200 cycles. The excellent reversible capacity and cycling stability indicate MrGO‐CNF a promising anode for sodium‐ion batteries.  相似文献   

7.
Sodium‐ion batteries (SIBs) are considered promising next‐generation energy storage devices. However, a lack of appropriate high‐performance anode materials has prevented further improvements. Here, a hierarchical porous hybrid nanosheet composed of interconnected uniform TiO2 nanoparticles and nitrogen‐doped graphene layer networks (TiO2@NFG HPHNSs) that are synthesized using dual‐functional C3N4 nanosheets as both the self‐sacrificing template and hybrid carbon source is reported. These HPHNSs deliver high reversible capacities of 146 mA h g?1 at 5 C for 8000 cycles, 129 mA h g?1 at 10 C for 20 000 cycles, and 116 mA h g?1 at 20 C for 10 000 cycles, as well as an ultrahigh rate capability up to 60 C with a capacity of 101 mA h g?1. These results demonstrate the longest cyclabilities and best rate capability ever reported for TiO2‐based anode materials for SIBs. The unprecedented sodium storage performance of the TiO2@NFG HPHNSs is due to their unique composition and hierarchical porous 2D structure.  相似文献   

8.
Carbonaceous materials are promising anodes for potassium‐ion batteries (PIBs). However, it is hard for large K ions (1.38 Å) to achieve long‐distance diffusion in pristine carbonaceous materials. In this work, the following are synthesized: S/N codoped carbon nanofiber aerogels (S/N‐CNFAs) with optimized electronic structure by S/N codoping, enhanced interlayer spacing by S doping, and a 3D interconnected porous structure of aerogel, through a pyrolysis sustainable seaweed (Fe‐alginate) aerogel strategy. Specifically, the S/N‐CNFAs electrode delivers high reversible capacities of 356 and 112 mA h g?1 at 100 and 5000 mA g?1, respectively. The capacity reaches 168 mA h g?1 at 2000 mA g?1 after 1000 cycles. A full cell with a S/N‐CNFAs anode and potassium prussian blue cathode displays a specific capacity of 198 mA h g?1 at 200 mA g?1. Density functional theory calculations indicate that S/N codoping is beneficial to synergistically improve K ions storage of S/N‐CNFAs by enhancing the adsorption of K ions and reducing the diffusion barrier of K ions. This work offers a facile heteroatom doping paradigm for designing new carbonaceous anodes for high‐performance PIBs.  相似文献   

9.
To improve the electrochemical performance of carbonaceous anodes for lithium ion batteries (LIBs), the incorporation of both well‐defined heteroatom species and the controllable 3D porous networks are urgently required. In this work, a novel N‐enriched carbon/carbon nanotube composite (NEC/CNT) through a chemically induced precursor‐controlled pyrolysis approach is developed. Instead of conventional N‐containing sources or precursors, Schiff‐base network (SNW‐1) enables the desirable combination of a 3D polymer with intrinsic microporosity and ultrahigh N‐content, which can significantly promote the fast transport of both Li+ and electron. Significantly, the strong interaction between carbon skeleton and nitrogen atoms enables the retention of ultrahigh N‐content up to 21 wt% in the resultant NEC/CNT, which exhibits a super‐high capacity (1050 mAh g?1) for 1000 cycles and excellent rate performance (500 mAh g?1 at a current density of 5 A g?1) as the anode material for LIBs. The NEC/CNT composite affords a new model system as well as a totally different insight for deeply understanding the relationship between chemical structures and lithium ion storage properties, in which chemistry may play a more important role than previously expected.  相似文献   

10.
For Si anode materials used for lithium ion batteries (LIBs), developing an effective solution to overcome their drawbacks of large volume change and poor electronic conductivity is highly desirable. Here, the composites of ZnO‐incorporated and carbon‐coated silicon/porous‐carbon nanofibers (ZnO‐Si@C‐PCNFs) are designed and synthesized via a traditional electrospinning method. The prepared ZnO‐Si@C‐PCNFs can obviously overcome these two drawbacks and provide excellent LIB performance with excellent rate capability and stable long cycling life of 1000 cycles with reversible capacity of 1050 mA h g?1 at 800 mA g?1. Meanwhile, anodes of ZnO‐Si@C‐PCNFs attached with Ag particles display enhanced LIB performance, maintaining an average capacity of 920 mA h g?1 at a large current of 1800 mA g?1 even for 1000 cycles with negligible capacity loss and excellent reversibility. In addition, the assembling method with important practical significance for a simple pouch full cell is designed and used to evaluate the active materials. The Ag/ZnO‐Si@C‐PCNFs are prelithiated and assembled in full cells using LiNi0.5Co0.2Mn0.3O2(NCM523) as cathodes, exhibiting higher energy density (230 W h kg?1) of 18% than that of 195 W h kg?1 for commercial graphite//NCM523 full pouch cells. Importantly, the comprehensive mechanisms of enhanced electrochemical kinetics originating from ZnO‐incorporation and Ag‐attachment are revealed in detail.  相似文献   

11.
Research on sodium‐ion batteries (SIBs) has recently been revitalized due to the unique features of much lower costs and comparable energy/power density to lithium‐ion batteries (LIBs), which holds great potential for grid‐level energy storage systems. Transition metal dichalcogenides (TMDCs) are considered as promising anode candidates for SIBs with high theoretical capacity, while their intrinsic low electrical conductivity and large volume expansion upon Na+ intercalation raise the challenging issues of poor cycle stability and inferior rate performance. Herein, the designed formation of hybrid nanoboxes composed of carbon‐protected CoSe2 nanoparticles anchored on nitrogen‐doped carbon hollow skeletons (denoted as CoSe2@C∩NC) via a template‐assisted refluxing process followed by conventional selenization treatment is reported, which exhibits tremendously enhanced electrochemical performance when applied as the anode for SIBs. Specifically, it can deliver a high reversible specific capacity of 324 mAh g?1 at current density of 0.1 A g?1 after 200 cycles and exhibit outstanding high rate cycling stability at the rate of 5 A g?1 over 2000 cycles. This work provides a rational strategy for the design of advanced hybrid nanostructures as anode candidates for SIBs, which could push forward the development of high energy and low cost energy storage devices.  相似文献   

12.
With the fast development in flexible electronic technology, power supply devices with high performance, low‐cost, and flexibility are becoming more and more important. Potassium ion batteries (KIBs) have a brilliant prospect for applications benefiting from high voltage, lost cost, as well as similar electrochemistry to lithium ion batteries (LIBs). Although carbon materials have been studied as KIBs anodes, their rate capability and cycling stability are still unsatisfactory due to the large‐size potassium ions. Herein, a nitrogen (N) and phosphorus (P) dual‐doped vertical graphene (N, P‐VG) uniformly grown on carbon cloth (N, P‐VG@CC) is reported as a binder‐free anode for flexible KIBs. With the combined advantages of rich active sites, highly accessible surface, highly conductive network, larger interlayer spacing as well as robust structural stability, this binder‐free N, P‐VG@CC anode exhibits high capacity (344.3 mAh g?1), excellent rate capability (2000 mA g?1; 46.5% capacity retention), and prominent long‐term cycling stability (1000 cycles; 82% capacity retention), outperforming most of the recently reported carbonaceous anodes. Moreover, a potassium ion full cell is successfully assembled on the basis of potassium Prussian blue (KPB)//N, P‐VG@CC, exhibiting a large energy density of 232.5 Wh kg?1 and outstanding cycle stability.  相似文献   

13.
Sodium‐ion batteries (SIBs) have been recognized as the promising alternatives to lithium‐ion batteries for large‐scale applications owing to their abundant sodium resource. Currently, one significant challenge for SIBs is to explore feasible anodes with high specific capacity and reversible pulverization‐free Na+ insertion/extraction. Herein, a facile co‐engineering on polymorph phases and cavity structures is developed based on CoMo‐glycerate by scalable solvothermal sulfidation. The optimized strategy enables the construction of CoMoOxSy with synergized partially sulfidized amorphous phase and yolk–shell confined cavity. When developed as anodes for SIBs, such CoMoOxSy electrodes deliver a high reversible capacity of 479.4 mA h g?1 at 200 mA g?1 after 100 cycles and a high rate capacity of 435.2 mA h g?1 even at 2000 mA g?1, demonstrating superior capacity and rate capability. These are attributed to the unique dual merits of the anodes, that is, the elastic bountiful reaction pathways favored by the sulfidation‐induced amorphous phase and the sodiation/desodiation accommodatable space benefits from the yolk–shell cavity. Such yolk–shell nano‐battery materials are merited with co‐tunable phases and structures, facile scalable fabrication, and excellent capacity and rate capability in sodium storage. This provides an opportunity to develop advanced practical electrochemical sodium storage in the future.  相似文献   

14.
Building a rechargeable battery with high capacity, high energy density, and long lifetime contributes to the development of novel energy storage devices in the future. Although carbon materials are very attractive anode materials for lithium‐ion batteries (LIBs), they present several deficiencies when used in sodium‐ion batteries (SIBs). The choice of an appropriate structural design and heteroatom doping are critical steps to improve the capacity and stability. Here, carbon‐based nanofibers are produced by sulfur doping and via the introduction of ultrasmall TiO2 nanoparticles into the carbon fibers (CNF‐S@TiO2). It is discovered that the introduction of TiO2 into carbon nanofibers can significantly improve the specific surface area and microporous volume for carbon materials. The TiO2 content is controlled to obtain CNF‐S@TiO2‐5 to use as the anode material for SIBs/LIBs with enhanced electrochemical performance in Na+/Li+ storage. During the charge/discharge process, the S‐doping and the incorporation of TiO2 nanoparticles into carbon fibers promote the insertion/extraction of the ions and enhance the capacity and cycle life. The capacity of CNF‐S@TiO2‐5 can be maintained at ≈300 mAh g?1 over 600 cycles at 2 A g?1 in SIBs. Moreover, the capacity retention of such devices is 94%, showing high capacity and good stability.  相似文献   

15.
The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium‐ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom‐doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N‐doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self‐assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g?1 at 0.5 A g?1 and an ultrafast charge–discharge feature with a remarkable capacity of 340 mA h g?1 at an ultrahigh current density of 40 A g?1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g?1. More importantly, when coupled with LiFePO4 cathode, the fabricated lithium‐ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF.  相似文献   

16.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

17.
Prussian blue and its analogs are regarded as the promising cathodes for sodium‐ion batteries (SIBs). Recently, various special structures are constructed to improve the electrochemical properties of these materials. In this study, a novel architecture of Prussian blue analogs with large cavity and multilayer shells is investigated as cathode material for SIBs. Because the hollow structure can relieve volume expansion and core–shell heterostructure can optimize interfacial properties, the complex structure materials exhibited a highly initial capacity of 123 mA h g?1 and a long cycle life. After 600 cycles, the reversible capacity of the electrode still maintains at 102 mA h g?1 without significant voltage decay, indicating a superior structure stability and sodium storage kinetics. Even at high current density of 3200 mA g?1, the electrode still delivers a considerable capacity above 52 mA h g?1. According to the electrochemical analysis and ex‐situ measurements, it can be inferred that the enhanced apparent diffusion coefficient and improved insertion/extraction performance of electrode have been obtained by building this new morphology.  相似文献   

18.
It is of great importance to exploit electrode materials for sodium‐ion batteries (SIBs) with low cost, long life, and high‐rate capability. However, achieving quick charge and high power density is still a major challenge for most SIBs electrodes because of the sluggish sodiation kinetics. Herein, uniform and mesoporous NiS2 nanospheres are synthesized via a facile one‐step polyvinylpyrrolidone assisted method. By controlling the voltage window, the mesoporous NiS2 nanospheres present excellent electrochemical performance in SIBs. It delivers a high reversible specific capacity of 692 mA h g?1. The NiS2 anode also exhibits excellent high‐rate capability (253 mA h g?1 at 5 A g?1) and long‐term cycling performance (319 mA h g?1 capacity remained even after 1000 cycles at 0.5 A g?1). A dominant pseudocapacitance contribution is identified and verified by kinetics analysis. In addition, the amorphization and conversion reactions during the electrochemical process of the mesoporous NiS2 nanospheres is also investigated by in situ X‐ray diffraction. The impressive electrochemical performance reveals that the NiS2 offers great potential toward the development of next generation large scale energy storage.  相似文献   

19.
Novel nitrogen doped (N‐doped) hollow beaded structural composite carbon nanofibers are successfully applied for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Tungsten disulfide (WS2) nanosheets are confined, through synergistic anchoring, on the surface and inside of hollow beaded carbon nanofibers (HB CNFs) via a hydrothermal reaction method to construct the hierarchical structure HB WS2@CNFs. Benefiting from this unique advantage, HB WS2@CNFs exhibits remarkable lithium‐storage performance in terms of high rate capability (≈351 mAh g?1 at 2 A g?1) and stable long‐term cycle (≈446 mAh g?1 at 1 A g?1 after 100 cycles). Moreover, as an anode material for SIBs, HB WS2@CNFs obtains excellent long cycle life and rate performance. During the charging/discharging process, the evolution of morphology and composition of the composite are analyzed by a set of ex situ methods. This synergistic anchoring effect between WS2 nanosheets and HB CNFs is capable of effectively restraining volume expansion from the metal ions intercalation/deintercalation process and improving the cycling stability and rate performance in LIBs and SIBs.  相似文献   

20.
An ultrahigh pyridinic N‐content‐doped porous carbon monolith is reported, and the content of pyridinic N reaches up to 10.1% in overall material (53.4 ± 0.9% out of 18.9 ± 0.4% N content), being higher than most of previously reported N‐doping carbonaceous materials, which exhibit greatly improved electrochemical performance for potassium storage, especially in term of the high reversible capacity. Remarkably, the pyridinic N‐doped porous carbon monolith (PNCM) electrode exhibits high initial charge capacity of 487 mAh g?1 at a current density of 20 mA g?1, which is one of the highest reversible capacities among all carbonaceous anodes for K‐ion batteries. Moreover, the K‐ion full cell is successfully assembled, demonstrating a high practical energy density of 153.5 Wh kg?1. These results make PNCM promising for practical application in energy storage devices and encourage more investigations on a similar potassium storage system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号