首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the behavior of two collinear cracks in magneto-electro-elastic composite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress field is independent of the electric field and the magnetic flux.  相似文献   

2.
This paper examines the dynamic response of an interface crack between two dissimilar magneto-electro-elastic materials subjected to the mechanical and electric magnetic impacts. The magneto-electric impermeable boundary conditions are adopted. Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations in Laplace transform domain, which are solved numerically. Lots of numerical results are given graphically in time domain. The effects of electric impact loading and magnetic impact loading on dynamic energy density factors are discussed. Crack growth and propagation is predicted. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

3.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.   相似文献   

4.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.  相似文献   

5.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

6.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

7.
This paper presents a numerical model for the analysis of cracked magnetoelectroelastic materials subjected to in-plane mechanical, electric and magnetic dynamic time-harmonic loading. A traction boundary integral equation formulation is applied to solve the problem in combination with recently obtained time-harmonic Green’s functions (Rojas-Diaz et al., 2008). The hypersingular boundary integral equations appearing in the formulation are first regularized via a simple change of variables that permits to isolate the singularities. Relevant fracture parameters, namely stress intensity factors, electric displacement intensity factor and magnetic induction intensity factor are directly evaluated as functions of the computed nodal opening displacements and the electric and magnetic potentials jumps across the crack faces. The method is checked by comparing numerical results against existing solutions for piezoelectric solids. Finally, numerical results for scattering of plane waves in a magnetoelectroelastic material by different crack configurations are presented for the first time. The obtained results are analyzed to evaluate the dependence of the fracture parameters on the coupled magnetoelectromechanical load, the crack geometry and the characteristics of the incident wave motion.  相似文献   

8.
The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated. Solutions to two kinds of electric boundary conditions on crack surfaces, i.e. electric impermeable and electric permeable, are obtained. Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations,which can be solved numerically. The effects of electrical load, geometry criterion of piezoelectric strips, relative location of cracks and material properties on the dynamic energy release rate are examined.  相似文献   

9.
The behavior of a penny shaped crack in a three-dimensional piezoelectric ceramic strip under non-axisymmetric in-plane normal mechanical and electrical loads is analyzed based on the continuous electric boundary conditions of the crack surface. The potential theory, Hankel transform and Fourier series are used to obtain the systems of dual integral equations, which are then expressed as Fredholm integral equations. The singular mechanical and electric fields and all mode-I field intensity factors are obtained, and the numerical values of various field intensity factors for PZT-6B piezoelectric ceramic are shown graphically for an uniform load and a pair of concentrated load, respectively.  相似文献   

10.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations ip which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.  相似文献   

11.
IntroductionCompositematerialconsistingofapiezoelectricphaseandapiezomagneticphasehasdrawnsignificantinterestinrecentyears,duetotherapiddevelopmentinadaptivematerialsystems .Itshowsaremarkablylargemagnetoelectriccoefficient,thecouplingcoefficientbetweenst…  相似文献   

12.
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto imperme ableboundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electro-magneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.  相似文献   

13.
The transient response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric impacting loads is investigated in the present paper. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain, which are solved numerically. The dynamic stress and electric displacement factors are obtained as the functions of time and geometry parameters. The present study shows that the presence of the dynamic electric field will impede or enhance the propagation of the crack in piezoelectric ceramics at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the space of the cracks and the crack length.  相似文献   

14.
Thermomagnetoelectroelastic crack branching of magnetoelectro thermoelastic materials is theoretically investigated based on Stroh formalism and continuous distribution of dislocation approach. The crack face boundary condition is assumed to be fully thermally, electrically and magnetically impermeable. Explicit Green’s functions for the interaction of a crack and a thermomagnetoelectroelastic dislocation (i.e., a thermal dislocation, a mechanical dislocation, an electric dipole and a magnetic dipole located at a same point) are presented. The problem is reduced to two sets of coupled singular integral equations with the thermal dislocation and magnetoelectroelastic dislocation densities along the branched crack line as the unknown variables. As a result, the formulations for the stress, electric displacement and magnetic induction intensity factors and energy release rate at the branched crack tip are expressed in terms of the dislocation density functions and the branch angle. Numerical results are presented to study the effect of applied thermal flux, electric field and magnetic field on the crack propagation path by using the maximum energy release rate criterion.  相似文献   

15.
In this paper, the dynamic behavior of two collinear symmetric interface cracks between two dissimilar magneto-electro-elastic material half planes under the harmonic anti-plane shear waves loading is investigated by Schmidt method. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. To solve the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor, the electric displacement intensity factor and the magnetic flux intensity factor are given. The relations among the electric filed, the magnetic flux field and the stress field are obtained.  相似文献   

16.
Magnetoelectroelastic materials are inherently brittle and prone to fracture. Therefore, it is important to evaluate the fracture behavior of these advanced materials. In this paper, a periodic array of cracks in a transversely isotropic magnetoelectroelastic material is investigated. Hankel transform is applied to solve elastic displacements, electric potential and magnetic potential. The problem is reduced into a system of integral equations. Both impermeable and permeable crack-face electromagnetic boundary conditions assumptions are investigated. Quantities of the stress, electric displacement and magnetic induction and their intensity factor are obtained. Effect of the crack spacing on these quantities is investigated in details.  相似文献   

17.
Dynamic analysis of two collinear electro-magnetically dielectric cracks in a piezoelectromagnetic material is made under in-plane magneto-electro-mechanical impacts. Generalized semi-permeable crack-face boundary conditions are proposed to simulate realistic opening cracks with dielectric. Ideal boundary conditions of a combination of electrically permeable or impermeable and magnetically permeable or impermeable assumptions are several limiting cases of the semi-permeable dielectric crack. Utilizing the Laplace and Fourier transforms, the mixed initial-boundary-value problem is reduced to solving singular integral equations with Cauchy kernel. Dynamic intensity factors of stress, electric displacement, magnetic induction and crack opening displacement (COD) near the inner and outer crack tips are determined in the Laplace transform domain. Numerical results for a special magnetoelectroelastic solid are calculated to show the influences of the dielectric permittivity and magnetic permeability inside the cracks on the crack-face electric displacement and magnetic induction. By means of a numerical inversion of the Laplace transform, the variations of the normalized intensity factors of stress and COD are discussed against applied magnetoelectric impact loadings and the geometry of the cracks for fully impermeable, vacuum, fully permeable cracks and shown in graphics.  相似文献   

18.
Fracture of a rectangular piezoelectromagnetic body   总被引:5,自引:0,他引:5  
The singular stress, electric fields and magnetic fields in a rectangular piezoelectromagnetic body containing a center Griffith crack under longitudinal shear are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be impermeable, to dual integral equations. The solution of the dual integral equations is then expressed in terms of Fredholm integral equations of the second kind. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Also obtained are the field intensity factors and the energy release rates. Numerical results obtained show that the geometry of the rectangular body have significant influence on the field intensity factors and the energy release rates.  相似文献   

19.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials subjected to a uniform tension loading. The permittivity of the air in the crack is considered. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the materials constants, the electric boundary conditions and the lattice parameter on the stress and the electric displacement fields near the crack tips. It can be obtained that the effects of the electric boundary conditions on the electric displacement fields are large. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

20.
This paper considers the analytical and semi-analytical solutions for anisotropic functionally graded magneto-electro-elastic beams subjected to an arbitrary load, which can be expanded in terms of sinusoidal series. For the generalized plane stress problem, the stress function, electric displacement function and magnetic induction function are assumed to consist of two parts, respectively. One is a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (z), and the other a linear polynomial of x with unknown coefficients depending on z. The governing equations satisfied by these z-dependent functions are derived. The analytical expressions of stresses, electric displacements, magnetic induction, axial force, bending moment, shear force, average electric displacement, average magnetic induction, displacements, electric potential and magnetic potential are then deduced, with integral constants determinable from the boundary conditions. The analytical solution is derived for beam with material coefficients varying exponentially along the thickness, while the semi-analytical solution is sought by making use of the sub-layer approximation for beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Two numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号