首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrazolo[3,4‐d]pyridazines, isoxazolo[3,4‐d]pyridazines, azolo[1,5‐a]pyrimidines, azolo[5,1‐c]triazines, pyrazoles, and benzo[b][l,4]diazepine were synthesized from the appropriate hydrazonoyl halides, hydroximoyl halides, heterocyclic amines, diazotized heterocyclic amines, arenediazonium chlorides, and o‐phenylenediamines with appropriate of sodium 3‐(5‐bromobenzofuran‐2‐yl)‐3‐oxoprop‐1‐en‐1‐olate or 1‐(5‐bromobenzofuran‐2‐yl)‐3‐(dimethylamino)prop‐2‐en‐1‐one. The newly synthesized compounds were elucidated by elemental analyses, spectral data, and alternative synthesis whenever possible.  相似文献   

2.
1,3,4‐Thiadiazoles, pyrazolo[1,5‐a]pyrimidines, pyrazolo[5,1‐c]triazine, and thieno[3,2‐d]pyrimidines were synthesized from 1‐(5‐bromobenzofuran‐2‐yl)ethanone. The structures of the newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation, and alternative synthesis route whenever possible.  相似文献   

3.
A regioselective synthesis of novel pyrazolo[1,5‐a]pyrimidines, pyrazolo[1,5‐a]quinazoline and pyrimido[4′,5′:3,4]pyrazolo[1,5‐a]pyrimidines incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide 3 with appropriate 1,3‐biselectrophilic reagents namely, β‐diketones, enaminones, and α,β‐unsaturated cyclic ketone. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

4.
A simple and efficient method has been developed for the synthesis of various pyrazolo[3,4‐d]pyrimidines by using microwave irradiation under solvent‐free conditions. The advantages of applying microwave irradiation compared with the classical method were demonstrated. The structures of all the compounds were confirmed by the usual techniques and, in two cases, by X‐ray analysis. The compounds did not display appreciable ability to inhibit xanthine oxidase activity. Screening for antifungal activity showed that some derivatives were active against four fungi, with more significant results for Botrytis.  相似文献   

5.
While 3(5)‐aminopyrazole reacts with enaminonitrile to yield pyrazolo[1,5‐a]pyrimidines, 3‐amino‐5‐pyrazolone reacts with the same reagents to yields pyrazolo[3,4‐b]pyridines.  相似文献   

6.
A regioselective synthesis of novel pyrazolo[3,4‐d]pyrimidines, imidazo[1,2‐b]pyrazoles, pyrazolo[3,4‐d][1,2,3]triazine, pyrazolo[1,5‐c][1,3,5]triazine and pyrazolo[1,5‐c][1,3,5]thiadiazine incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide ( 1 ) with each of DMF‐DMA, phenylisothiocyanate, chloroacetyl chloride, phenacyl bromide, benzoylisothiocyanate and formalin, respectively. All structures of the newly synthesized compounds were elucidated by elemental analysis and spectral data.  相似文献   

7.
Pyridine‐2(1H)‐thiones were prepared and reacted with several active halogenated reagents to afford novel thieno[2,3‐b]pyridines in excellent yields. Thieno[2,3‐b]pyridine‐2‐carbohydrazide derivative was prepared by the reaction of either ethyl 2‐((3‐cyanopyridin‐2‐yl)thio)acetate derivative or thieno[2,3‐b]pyridine‐2‐carboxylate derivative with hydrazine hydrate. On the other hand, the reaction of either pyridine‐2(1H)‐thione or ethyl 2‐((pyridin‐2‐yl)thio)acetate derivative with hydrazine hydrate afforded the corresponding 1H‐pyrazolo[3,4‐b]pyridine derivative. Thieno[2,3‐b]pyridine derivatives reacted with several reagents to afford the corresponding pyrimidine‐4(3H)‐ones and [1,2,3]triazin‐4‐(3H)‐one. Moreover, 2‐carbohydrazide derivative reacted with β‐dicarbonyl reagents to give 2‐((3‐methyl‐1H‐pyrazol‐1‐yl)carbonyl)thienopyridines. The structure of the target molecules is elucidated using elemental analyses and spectral data.  相似文献   

8.
The reaction of 3(5)‐amino‐5(3)‐hydrazinopyrazole, a bifunctional compound, with 3‐oxo‐3‐phenylpropanenitrile and two of its p‐substituted derivatives affords 2,5‐diaryl‐7‐aminopyrazolo[1,5‐a]pyrimidines. A mechanism for this unexpected reaction involving the formation of hydrazine is proposed. The position of the aryl substituents on the bicyclic ring has been established by the combined use of NMR and DFT calculations. Moreover, the chemical shifts have been calculated, and some general rules have been withdrawn.  相似文献   

9.
Ethyl 2-{2-[4-(2,3-dimethyl-5-oxo-1-phenyl-3-(pyrazolin-4-yl)]-2-cyano-1-(phenylamino)vinylthio}-acetate, 2-[4-(2,3-dimethyl-5-oxo-1-phenyl-(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]2-(4-oxo-3-phenyl-(1,3-thiazoilidin-2-ylidene))ethanenitrile, 2-[4-(2,3-dimethyl-5-oxo-1-phenyl(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]-2-(4-methyl-3-phenyl(1,3-thiazolin-2-ylidene))ethanenitrile, 2-(5-acetyl-4-methyl-3-phenyl(1,3-thiazolin-2-ylidene))-2-[4-(2,3-dimethyl-5-oxo-1-phenyl(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]ethanenitrile, and ethyl 2-(cyano(4-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)thiazol-2-yl)methylene)-2,3-dihydro-4-methyl-3-phenylthiazole-5-carboxylate were synthesized by treatment of 2-(4-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)thiazol-2-yl)-3-mercapto-3-(phenylamino)-acrylonitrile with appropriate halo ketones or halo esters. Also, 4-{2-[5,7-dimethyl-2-(phenylamino)(7a-hydropyrazolo[1,5-a]pyrimidin-3-yl](1,-thiazol-4-yl)}-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one derivatives were synthesized via reaction of 4-{2-[5-amino-3-(phenylamino)pyrazolin-4-yl](1,3-thiazol-2-yl)}-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one with β-diketone or β-keto ester. All synthesized compound were established by elemental analysis, spectral data, and alternative synthesis whenever possible.  相似文献   

10.
3(5)‐Aminopyrazole derivative ( 6 ) has been synthesized by the reactions of the versatile unreported 2‐cyano‐N ′‐(1‐(3‐methyl‐6‐phenylimidazo[2,1‐b ]thiazol‐2‐yl)ethylidene)acetohydrazide ( 3 ) with phenyl isothiocyanate in KOH/DMF solution followed by reaction with methyl iodide and hydrazine hydrate. Reaction of compound 6 with some 1,3‐dicarbonyl compounds yielded pyrazolo[1,5‐a ]pyrimidine derivatives ( 14 – 17 ). Alkylation of compound 6 with various halo reagents, followed by intramolecular cyclization, yielded the corresponding imidazo[1,2‐b ]pyrazole derivatives 27 , 29 , 31 , and 33 . All newly synthesized compounds were elucidated by considering the data of both elemental analysis and spectral data.  相似文献   

11.
Some new derivatives of 3,5‐diaryl‐4‐imino‐5,7,8,9‐tetrahydro‐3H‐chromeno[2,3‐d ]pyrimidine have been prepared through a condensation reaction of 2‐amino‐4‐aryl‐3‐cyano‐5,6,7,8‐tetrahydrobenzo[b ]pyrans with triethyl orthoformate in boiling acetic anhydride followed by cyclization with primary aryl amines in the presence of a few drops triethylamine as catalyst in refluxing ethanol. The products were characterized on the basis of IR, 1H‐NMR, and 13C‐NMR spectral and microanalytical data.  相似文献   

12.
o‐Aminothiophene dicarbonitrile 1 on neat reaction with cyclic ketones in anhydrous ZnCl2 yielded mixture of fused aminopyridine 3 and iminospirooxazine 4 derivatives. Similarly, pyrimidine derivatives 5 and 8 were obtained by the reaction of this intermediate 1 with formic acid and DMF‐DMA followed by hydrazine hydrate, respectively. The reaction of o‐amino‐thiophene dicarboxamide 2 at ambient temperature with cyclic ketones yielded spiropyrimidine 10 as a sole product in quantitative yield. The regioselective anellated pyrimidine 9 , 11 , and dihydropyrimidine 12 derivatives were also obtained by the reaction with aromatic aldehydes in presence of piperidine and iodine respectively. J. Heterocyclic Chem., (2012).  相似文献   

13.
A series of pyrimido[1,2‐a]benzimidazoles were obtained from aldehydes, 2‐aminobenzimidazole and ethyl acetoacetate in good‐to‐excellent yields by a simple, mild, and efficient procedure utilizing N,N,N′,N′‐tetrabromobenzene‐1,3‐disulfonamide (TBBDA) and poly(N‐bromo‐N‐ethylbenzene‐1,3‐disulfonamide) (PBBS) as catalysts.  相似文献   

14.
Cyclocondensation of cyanoacetamide and cyanothioacetamide with sodium salt of 3‐hydroxy‐1‐(pyridin‐3‐yl)prop‐2‐en‐1‐one gave 6‐oxo‐[2,3′]bipyridine 5a and 6‐thioxo‐[2,3′]bipyridine 5b derivatives, respectively. Compound 5b upon treatment with different methylenes 8 gave thieno[2,3‐b]pyridines 10 . Treatment of 5b with iodomethane gave bipyridine derivative 7 , which cyclocondensed with hydrazines 11 to give pyrazolo[3,4‐b]pyridines 13 . J. Heterocyclic Chem., (2012).  相似文献   

15.
A three‐component reaction for the synthesis of new coumarin‐fused tetracyclic system from 4‐hydroxycoumarin, aldehydes, and 5‐aminopyrazoles/5‐aminoisoxazole is described. In the presence of acetic acid, 4,7‐dihydro‐1H‐pyrazolo[3,4‐b]pyridines ( 4 ) and pyrazolo[3,4‐b]pyridines ( 5 ) were obtained in acetonitrile and dimethylsulfoxide medium, respectively. The reaction gave rise to 4,5‐dihydro‐1H‐pyrazolo[3,4‐b]pyridin‐6(7H)‐ones ( 6 ) in acetic acid–ethanol combination system, which involved the C–O bond cleavage. 4‐Hydroxy‐6‐methyl‐2H‐pyran‐2‐one and acenaphthylene‐1,2‐dione were also examined, affording the corresponding C–O bond cleavage products. Mechanism indicates that the reaction is reversible in acetic acid–ethanol combination system.  相似文献   

16.
The Knoevenagel reactions of malononitrile with acetophenone or 4‐substituted acetophenons were carried to give the corresponding 2‐(1‐aryle thylidene)malononitriles, which was further cyclized with sulfur using NaHCO3 as catalysts to generate 2‐amino‐5‐arylthiophene‐3‐carbonitrile 2 . The intermediate enamines 3 were prepared by refluxing of 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesulfonic acid as catalyst. The title compounds 4‐amino‐3‐aryl ‐7‐substituted‐7,8‐dihydrothieno[2,3‐b]quinolin‐5(6H)‐one were synthesized by cyclization of 3 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

17.
5‐Amino‐4‐formyl pyrazole carboxylate gave facile reactions with malononitrile, hydrazine, and ketones in the presence of piperidine furnished substituted pyrazolo[3,4‐b]pyridines and pyrazolo[3,4‐b]quinolones. The pyridazine sulfonamides were obtained by the reaction of 5‐chloro 4‐formyl pyrazole carboxylate with sulfonamide derivatives.  相似文献   

18.
In an attempt to establish novel candidate with promising anticancer activity, two derivatives of (benzo[d]thiazol‐2‐yl)thiophene backbone 1 and 14 were synthesized, and they further reacted with various chemical reagents to afford the corresponding substituted thiophene derivatives 6 , 8 , 10 , 15 , 17 , and 20 , thieno[3,2‐d]pyrimidine derivatives 2 – 5 , 7 , 9 , 16 , 21 , 23 , and 24 , thieno[3,2‐b]pyridine derivatives 11 – 13 , and thieno[3,2‐e][1,4]oxazepine derivative 18 . Structures of prepared compounds were affirmed via spectral and elemental data. Among the obtained compounds, seven derivatives 2 , 3 , 4 , 5 , 11 , 12 , and 13 were chosen by National Cancer Institute, USA. Such compounds were screened for their antitumor activity versus 60 cancer cell lines in one‐dose (10 μmol) screening assay. The outcomes showed that all selected compounds exhibited moderate to high anticancer activity towards many cancer cell lines among which compounds 5 and 11 exerted potent antitumor activity against numerous malignant growth cell lines particularly Ovarian Cancer IGROV1.  相似文献   

19.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号