首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要:随着高炉喷吹天然气技术的应用推广,需要对天然气在高炉内的热力学行为及其操作参数的变化进行研究。利用热力学第二定律,分析了喷吹天然气在高炉内的热力学还原行为。并以物料平衡和热量平衡模型为基础,探讨了鼓风富氧、鼓风温度、鼓风湿度等工艺参量对喷吹天然气后高炉炉腹煤气量和风口回旋区理论燃烧温度的影响及其变化。利用高炉操作参数对炉腹煤气量和理论燃烧温度影响结果进行线性回归,实现定量分析各因素之间的动态耦合效果。研究结果表明:天然气首先在高温下吸热裂解成CO和H2,有助于提高煤气中CO和H2的体积分数和还原势,促进间接还原反应的进行。高炉喷吹天然气导致炉腹煤气量快速升高,理论燃烧温度快速降低。鼓风湿度的变化对炉腹煤气量和理论燃烧温度影响很大,富氧率其次。而风温变化潜力有限,对炉腹煤气量和理论燃烧温度影响相对较小。  相似文献   

2.
高炉富氧喷吹焦炉煤气理论研究   总被引:3,自引:0,他引:3  
 用计算模拟富氧喷吹焦炉煤气以后高炉直接还原度、焦比、入炉风量、炉腹煤气量、理论燃烧温度和炉顶煤气的变化,同时分析了富氧喷吹焦炉煤气对高炉冶炼可能带来的影响。计算结果表明:在保证高炉热量和理论燃烧温度满足高炉正常生产前提下,选择合适的富氧率和焦炉煤气喷吹量,可以使焦比降低至291kg/t,CO2的排放量减少6.1%,并且提高了煤气利用价值,增加企业的经济和环境效益。  相似文献   

3.
王瀚  王静松  彭星 《中国冶金》2021,31(5):19-25
为降低高炉炼铁中固体碳耗、高效利用冶金高温副产煤气,提出高炉富氧喷吹还原性气体工艺流程,建立基于物料平衡与热平衡的高炉数学模型,并修正了理论燃烧温度计算公式。应用该模型分别对传统高炉、炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程进行技术参数分析。结果表明,炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程中,当氧气浓度达到50%、炉缸还原性气体喷吹量为267 m3/t时,焦比为291 kg/t,煤比为150 kg/t,直接还原度为0.195,相比传统高炉,燃料比降低109 kg/t,综合能耗降低4.8%。还原性气体温度每升高100 ℃,可多喷吹5.8 m3左右的还原性气体,降低焦比约5.5 kg/t;还原性气体喷吹量对理论燃烧温度影响较大,炉缸每喷吹1 m3/t、1 000 ℃的还原性气体,理论燃烧温度可降低约1.9 ℃。  相似文献   

4.
富氧喷煤高炉能量变化的分析   总被引:8,自引:0,他引:8  
梁中渝  殷利  沈甦  龚文渠  秦娜莎 《钢铁》2005,40(1):16-19,42
用计算模拟不同的富氧率和喷煤量对高炉热量分布的影响。分析富氧高炉喷吹煤量后高炉入炉风量、热风带入热量、总热收入量及理论燃烧温度的变化对高炉冶炼的影响。探讨富氧喷煤高炉热量变化的特点,结果表明:在保证高炉热量合理分布的前提下,选择好合适的喷煤量和富氧率,可以使高炉热量分布合理,燃料比降低。  相似文献   

5.
周恒  徐坤  姚舜  寇明银  吴胜利 《钢铁》2021,56(2):57-62
 COREX脱CO2顶煤气作为一种优质富氢气体,直接喷吹进入高炉可有效降低高炉燃料消耗。建立了高炉喷吹COREX脱CO2顶煤气静态工艺模型,研究高炉喷气对风口理论燃烧温度、炉腹煤气量、炉腹煤气成分、风口回旋区形状、直接还原度、节焦效果等因素的影响,并进一步探究了提高风温作为热补偿措施后的适宜喷气量。研究结果表明,不采取热补偿措施条件下,随着COREX脱CO2顶煤气喷吹量的增加,理论燃烧温度逐渐降低,炉腹煤气量逐渐升高,高炉直接还原度降低。以维持理论燃烧温度和炉腹煤气量稳定为标准,风温相对基准提高30、60、90 ℃后,可接受喷吹的煤气量为45.4、85.5、123.3 m3/t。热补偿后,随着喷气量增加,鼓风量逐渐降低,富氧率逐渐升高。炉腹煤气中的CO及H2含量随喷气量增加而增加,每增加10 m3/t的COREX煤气喷吹量,炉腹煤气中总的还原气体体积分数增加0.46 %,直接还原度降低0.006,节约焦炭1.48 kg/t。  相似文献   

6.
 钢铁工业是中国制造业中碳排放量最高的行业,碳排放占全国碳排放总量的15%左右。高炉是钢铁工业碳消耗量最大的工序,碳消耗占钢铁流程总碳消耗的70%以上,减少高炉冶炼碳消耗是降低钢铁工业碳排放的最有效措施。高炉喷吹富氢气体不但可以提高冶炼效率,减少污染物排放,而且可以减少焦炭或煤粉消耗,从源头上降低高炉冶炼碳消耗,从而减少碳排放。以山西晋南钢铁两座1 860 m3高炉风口喷吹富氢气体工业化生产数据为例,详细研究了高炉喷吹富氢气体对燃料比、风口理论燃烧温度、炉腹煤气量、H2利用率以及CO2排放量的影响。结果表明,喷吹富氢气体可以显著降低高炉固体燃料消耗,在吨铁富氢气体喷吹量为65 m3条件下,富氢气体与固体燃料的置换比为0.49 kg/m3;风口喷吹富氢气体降低了风口理论燃烧温度,吨铁每喷吹1 m3富氢气体,风口理论燃烧温度降低约1.5 ℃,高炉鼓风量和炉腹煤气量都少量降低;喷吹富氢气体以后,炉内H2的利用率平均为37.3%,CO的利用率约为43.2%;吨铁CO2排放量可以降低80 kg左右,高炉CO2排放降低了5.6%,取得了较好的经济、环境和减污降碳效果。  相似文献   

7.
全氧喷吹高氢燃气高炉风口理论燃烧温度的模拟计算   总被引:1,自引:0,他引:1  
通过对物料、热量平衡的计算得出全氧高炉喷吹高氢燃气工艺风口理论燃烧温度。从而可知,只要改变不同燃料的配比就能将风口理论燃烧温度控制在保证高炉稳定运行所需要的范围。  相似文献   

8.
结合风口回旋区燃烧和炉外煤气预热、脱除和循环的平衡关系,建立了氧气高炉一维气固换热与反应动力学模型,并采用传统高炉的运行和解剖数据对模型进行了验证分析.通过模型研究了氧气含量和上部循环煤气流量对氧气高炉炉内过程变量的影响规律.结果表明:氧气含量偏低和上部循环煤气流量不足时,会降低铁矿石还原效果,炉渣内出现大量未还原铁氧化物;氧气含量和上部循环煤气流量的提高可以有效提高炉内CO含量和铁矿石还原速度,但提高上部循环煤气流量会大幅提升炉顶煤气温度,增大热量损失.与传统高炉相比,氧气高炉内CO含量提高1.0~1.5倍,炉内气体还原性更强;铁矿石还原完成位置提高1.49 m,全炉还原反应速度更快;直接还原度降低55.2%~79.2%,炉内直接还原反应消耗的碳量更少.   相似文献   

9.
Blast furnace operation with natural gas (NG) injection is one of the effective measures to save energy, reduce CO2 emission, and decrease environmental load for iron and steel industry. Numerical simulations on blast furnace operation with NG injection through tuyeres are performed in this paper by raceway mathematical model, multi‐fluid blast furnace model, and exergy analytical model. With increasing NG injection volume, the simulation results are shown as follows: (1) the theoretical flame temperature and bosh gas volume can be constant by decreasing blast volume and increasing oxygen enrichment. (2) The utilization rate of CO enhances while that of H2 decreases. The proportion of H2 in indirect reduction tends to be increased, which accelerates the reduction of burdens. The pressure drop shows that the permeability of blast furnace gets better. The blast furnace productivity is increased from 2.07 to 3.08 t · m?3 · day?1. The silicon content in hot metal is decreased from 0.26% to 0.05%. When BF operation with 125.4 kg · tHM?1 NG injection, coke rate and carbon emission rate are decreased by 27.2% and 32.2%, respectively. (3) The thermodynamic perfection degree is increased from 88.40% to 90.50%, the exergy efficiency is decreased from 51.94% to 49.02% and the chemical exergy of top gas is increased from 4.69 to 6.22 GJ · tHM?1. It is important to strengthen the recycling of top gas.  相似文献   

10.
降低燃料比和提高富氧率增加高炉产量   总被引:4,自引:3,他引:1  
根据宝钢3号高炉的生产数据,分析了降低燃料比、提高富氧率对高炉强化的影响。认为在高炉允许的炉腹煤气量时,降低燃料比和提高富氧率,从而减少单位生铁的炉腹煤气量是高炉强化的决定性因素。对生产操作数据进行诺模化,制作成衡量高炉操作的诺模图,用来估计高炉运行的情况。  相似文献   

11.
根据气膜传质控制理论,在物料平衡和能量平衡的基础上,建立了O2高炉风口前燃烧带数学模型,模拟了不同鼓风速度和O2湿度条件下风口前燃烧带内气体各组分浓度场和温度场分布情况。模拟结果表明:改变鼓风速度可以调节风口前燃烧带气体温度和浓度分布,从而调节O2高炉软熔带形状及煤气流分布;增加鼓风湿度可以降低风口理论燃烧温度,增大还原煤气中H2含量。  相似文献   

12.
由于富氧、喷煤等等炼铁技术的发展,过去采用的炉缸面积燃烧强度、冶炼强度为基础的高炉设计方法已经不适用了。应该建立中国的高炉设计体系。高炉设计必须满足高炉强化生产的要求,笔者使用了近代气体动力学的成果,科学地分析了衡量高炉强化冶炼过程的因素-炉腹煤气量指数,用以指导高炉设计,形成新的高炉设计体系。  相似文献   

13.
从低碳炼铁的角度研究高炉采取的各种操作制度的合理性非常必要。用Rist模型和风口耗氧量来评估增加渣量、提高炉腹煤气量、高富氧高湿度、低硅冶炼等操作制度。研究了增加渣量不仅要增加炉渣的熔化热,而且由于风口耗氧量的增加,将提高直接还原度,提高燃料比。高富氧高湿度冶炼,由于水分解需要消耗碳素,同时附加了热量消耗,使风口耗氧量增加;唯有改善炉身效率,增加间接还原,充分利用炉内煤气热能和化学能,才能补偿风口耗氧量引起的负面影响。目前中国高炉的炉身效率普遍偏低,而低硅冶炼应在提高煤气利用率与低燃料比的基础上进行才能发挥效果。由此提出在种种操作制度下需要关注的方面,供操作者参考。  相似文献   

14.
以与炉腹煤气量指数相关联的高炉利用系数为优化目标,建立了包括物质和能量的平衡约束、工艺约束、操作条件约束、其他变量上下限约束共50个线性和非线性约束条件,原燃料参数、工艺参数、生铁质量参数共16个优化变量的高炉性能优化模型。利用序列二次规划算法,得出优化结果。经与实际生产数据比较,验证了模型的正确性。利用该优化模型和算法,分析了高炉炉腹煤气量指数、煤比、铁的直接还原度、鼓风温度、鼓风湿度、鼓风富氧率对高炉利用系数的影响。  相似文献   

15.
高炉喷吹除尘灰的研究   总被引:4,自引:0,他引:4  
 由于高炉除尘灰含有大量的铁和碳,且其排放造成严重的环境污染,因此通过现有的喷煤系统将其作为含铁原料和含碳原料从风口喷入高炉无疑是处理除尘灰的一种有效途径。考虑到喷吹除尘灰影响到炉内炉渣的碱度、铁水的硫含量、理论燃烧温度和焦比的变化,通过高炉物料平衡和局部热平衡模型计算了焦比、炉渣碱度和理论燃烧温度随喷入除尘灰量的变化,为高炉操作提供理论依据,并进行了工业试验。结果表明,焦比和炉渣碱度随除尘灰喷入量的增加而下降,而理论燃烧温度则变化不大,这些变化可以通过调整配料来应付;喷吹除尘灰后高炉透气性略有下降,所需喷吹压力增大,试验证明高炉喷吹自身的除尘灰是可行的。  相似文献   

16.
唐顺兵 《中国冶金》2011,21(4):37-42
太钢4 350 m3高炉是我国自行设计建造的大型高炉,2006年10月13日开炉。2008年通过分析煤比200 kg/t生产情况下要求的原燃料成分和性能水平,不断探索在高富氧率、大喷煤高炉腹煤气量指数生产下合理的煤气流分布和操作炉型的控制,同时加强炉前作业管理,在2008年2月后实现连续5个月(全年有8个月)煤比200kg/t以上。  相似文献   

17.
《钢铁冶炼》2013,40(6):467-474
Abstract

Some key problems relating to high rate pulverised coal injection into the blast furnace are discussed, including furnace permeability in the lower furnace and raw materials quality, heat compensation and theoretical flame temperature, oxygen enrichment, material and gas distribution control and so on. A new method of calculation of theoretical flame temperatures is proposed, taking into account coal combustion efficiency in the raceway. Measures that should be taken for increasing coal injection rates are discussed.  相似文献   

18.
 通过攀钢高炉与不同容积高炉的指标对比,提出了衡量高炉冶炼强化程度的指数ξ,包括渣铁量指数和炉腹煤气量指数两个部分,克服了传统冶炼强度和炉腹煤气量指数的局限,更能体现高炉冶炼的本质。通过对不同高炉强化程度指数的分析和对比可知:渣量对攀钢高炉强化程度的影响很大,是攀钢高炉强化程度高的重要原因;提高富氧率可以在不增加风量的情况下提高强化程度;高压操作是在高冶炼强度下缓解下降炉料与上升煤气流之间相对运动矛盾的有效手段,提高炉顶压力是攀钢进一步提高强化程度的重要措施。  相似文献   

19.
摘要:建立了高炉或氧气高炉喷吹烧结烟气的数学模型,实现对烧结烟气利用与处理的目的。模拟结果显示:当烧结烟气喷吹温度为1250℃,全氧高炉的炉缸与炉身处各循环200m3/t炉顶煤气时,烧结烟气喷吹量每增加100m3/t,高炉理论燃烧温度降低约134℃,直接还原度增大0.02。随着烧结烟气喷吹量的增加,煤比逐渐增大,炉顶煤气中氮气含量逐渐增大,SO2浓度逐渐降低。当烧结烟气喷吹量达到894m3/t时,炉顶煤气中的SO2质量浓度为214.28mg/m3,与普通高炉相比,降低约1.48mg/m3;氮氧化物质量浓度为45.42mg/m3,低于普通高炉约6.36mg/m3。  相似文献   

20.
从设计高炉出发,基于液泛现象和流态化现象的临界条件确定最大炉腹煤气量,用高炉炉腹煤气量指数验证计算的合理性,而最大炉腹煤气量对应于最大鼓风量。在本设计高炉冶炼条件下,为避免流态化现象和液泛现象的发生,冶炼1t生铁所允许的最大炉腹煤气量为1 444.59m3,最大鼓风量为1 107.64m3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号