首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yb2SiO5 (ytterbium monosilicate) top coatings and Si bond coat layer were deposited by air plasma spray method as a protection layer on SiC substrates for environmental barrier coatings (EBCs) application. The Yb2SiO5-coated specimens were subjected to isothermal heat treatment at 1400 °C on air for 0, 1, 10, and 50 h. The Yb2SiO5 phase of the top coat layer reacted with Si from the bonding layer and O2 from atmosphere formed to the Yb2Si2O7 phase upon heat treatment at 1400 °C. The oxygen penetrated into the cracks to form SiO2 phase of thermally grown oxide (TGO) in the bond coat and the interface of specimens during heat treatment. Horizontal cracks were also observed, due to a mismatch of the coefficient of thermal expansion (CTE) between the top coat and bond coat. The isothermal heat treatment improves the hardness and elastic modulus of Yb2SiO5 coatings; however, these properties in the Si bond coat were a little bit decreased.  相似文献   

2.
In this study, nanostructured and conventional Yb2SiO5 coatings were prepared by atmospheric plasma. The microstructure and nanomechanical properties of these coatings were compared before and after heat treatment. The results show that the nanostructured Yb2SiO5 coatings have a mono-modal distribution, and the conventional Yb2SiO5 coatings have a bimodal distribution. Both types of coatings had improved nanomechanical properties after heat treatment. However, the increased elastic modulus and nanohardness of the nanostructured Yb2SiO5 coating were more apparent than those of the conventional Yb2SiO5 coatings. The nanostructured Yb2SiO5 coating had a higher elastic modulus than the conventional Yb2SiO5 coating, reflecting its high density. Subsequently, the microscopic morphology and micromechanical properties of the coatings were analyzed after heat treatment. Defects in the coatings, including pores, and microcracks, were significantly reduced with grain growth after thermal treatment, and the nanostructured Yb2SiO5 coatings had improved healing ability and micro-mechanical properties.  相似文献   

3.
《Ceramics International》2022,48(20):29919-29928
MoSi2 doped Yb2Si2O7 composites were designed to extend the lifetime of Yb2Si2O7 environmental barrier coatings (EBCs) via self-healing cracks during high-temperature applications. Yb2Si2O7–Yb2SiO5–MoSi2 composites with different mass fractions were prepared by applying spark plasma sintering. X-ray diffraction results confirmed that the composites consisted of Yb2Si2O7, Yb2SiO5, and MoSi2. The thermal expansion coefficients (CTEs) of the composites increased with an increase in the MoSi2 content. The average CTE of the 15 wt% MoSi2 doped Yb2Si2O7 composite was 5.24 × 10?6 K?1, indicating that it still meets the CTE requirement of EBC materials. After being pre-cracked by using the Vickers indentation technique, the samples were annealed for 0.5 h at 1100 or 1300 °C to evaluate the crack-healing ability. Microstructural studies showed that cracks in 15 wt% MoSi2 doped Yb2Si2O7 composites were fully healed during annealing at 1300 °C. Two mechanisms may be responsible for crack healing. First, the cracks were filled with SiO2 glass formed by MoSi2 oxidation. Second, the formed SiO2 continued to react with Yb2SiO5 to form Yb2Si2O7, which can cause cracks to heal owing to volumetric expansion. The Yb2Si2O7 formation with smaller volume expansion is more beneficial.  相似文献   

4.
《Ceramics International》2023,49(8):11837-11845
Environmental barrier coatings (EBCs) have been expected to be applied on the surface of ceramic matrix composites (CMCs). However, the oxidation and propagation cracking of the silicon bond layer are the most direct causes to induce the failure of EBCs under high temperature service environment. The modification of silicon bond layer has become an important method to prolong the service life of EBCs. In this work, the Yb2O3 have been introduced to the silicon bond layer, and three kinds of tri-layer Yb2SiO5/Yb2Si2O7/(Si-xYb2O3) EBCs with modified Si bond layer by different contents of Yb2O3 (x = 0, 10 vol%, 15 vol%) were prepared by vacuum plasma spray technique. The thermal shock performance and long-term oxidation resistance of the EBCs at 1350 °C were investigated. The results showed that the addition of appropriate amount of Yb2O3 (10 vol%) can improve the structural stability and reduce the cracks of the mixed thermal growth oxide (mTGO) layer by forming the oxidation product of Yb2Si2O7 during long-term oxidation. The excessive addition of Yb2O3 increased the stress during thermal shock as well as accelerated the oxygen diffusion during long-term oxidation, leading to the failure of EBCs. Moreover, the distribution uniformity of Yb2O3 deserves further consideration and improvement.  相似文献   

5.
《Ceramics International》2021,47(22):31625-31637
Experimental investigations of Yb2Si2O7 pellet exposed to Calcium-Ferrum-Alumina-Silicate (CFAS) at 1400 °C in ambient air were carried out to reveal corrosion reaction between molten silicate deposit and Yb2Si2O7. Phase transformation, microstructure evolution and reaction mechanism were evaluated. Results indicated that the corrosion process was accompanied by the infiltration of CFAS melt, the dissolution of Yb2Si2O7 and the reprecipitation of Yb2Si2O7 and Ca2Yb8(SiO4)6O2 apatite as reaction product. The formation of apatite decreased the concentration of Ca2+ in the melt. After CFAS exposure at 1400 °C for 30 h, the thickness of the apatite layer stopped increasing due to insufficient Ca2+ content, and remained at about 115.4 μm. However, the infiltration depth of CFAS melt increased with the extending corrosion duration and increasing deposit content. And the infiltration rate was preliminarily found to first decrease and then increase with time. Most of the residual CFAS were crystallized into garnet (Ca3Fe2(SiO4)3 and Yb3Fe5O12) and mayerite (Ca12Al14O33), while a small volume of amorphous glass was dispersed among the garnet and mayerite grains.  相似文献   

6.
Enhancing the resistance to molten silicate corrosion is crucial for the long service life of environmental barrier coatings (EBCs). In this study, we used the Al-modification technique to enhance the CMAS corrosion resistance of Si/Yb2Si2O7 coatings prepared by plasma spray-physical vapor deposition. The results show that the Al-modified Yb2Si2O7 coating had higher resistance to CMAS corrosion than the Yb2Si2O7 coating annealed at 1300 ℃ for 100 h, which is related to the refractory mullite and Yb2Mg(AlO2)2O3 generated during the CMAS exposure of Al-modified Yb2Si2O7 coating. The Al-modified Yb2Si2O7 coating also exhibited excellent resistance to oxygen penetration. The Al-modification technology provides the direction for the corrosion resistance of Yb2Si2O7 system to CMAS.  相似文献   

7.
Mixed Y and Yb disilicate coatings (Y/Yb)DS have been proposed as dual function thermal and environmental barrier coatings (EBCs) for protecting SiC-based ceramic matrix composites in gas-turbine environments. As an initial step, the 1350 °C dry air cyclic oxidation of atmospheric plasma sprayed (Y1.2/Yb0.8)DS and ytterbium disilicate/ytterbium monosilicate (YbDS/YbMS) EBCs deposited onto Si bond coatings was compared. As a baseline for evaluating EBC oxidant permeability, the dry air cyclic oxidation scale growth rates for bare silica formers (SiC, Si) were also measured and were consistently higher than rates previously measured after isothermal oxidation. Regarding Si bond coat oxidation rates underlying (Y/Yb)DS and YbDS/YbMS EBCs, the thinner silica scale formed under the thinner and denser (Y/Yb)DS coatings suggested a lower oxidant permeability than YbDS/YbMS. After 500 1-h cycles, the (Y/Yb)DS coating was comprised of only the β-polymorph disilicate and minor amounts of the X-2 phase monosilicate phase. Negligible differences in oxidation kinetics for (Y/Yb)DS coatings over the 90 – 240 µm thickness range were observed.  相似文献   

8.
A primary failure mode for environmental barrier coatings (EBCs) on SiC ceramic matrix composites (CMCs) is the oxidation of the intermediate Si-bond coating, where the formation of SiO2 at the bond coating–EBC interface results in debonding and spallation. This work compares the microstructure evolution and steam oxidation kinetics of the Si-bond coating beneath yttrium/ytterbium disilicate ((Y/Yb)DS) and ytterbium disilicate/monosilicate (YbDS/YbMS) EBCs to better understand the impact of EBC composition on oxidation kinetics. After 500 1-h cycles at 1350°C, (Y/Yb)DS displayed a decreasing concentration of the monosilicate minor phase and increasing concentration of porosity as furnace cycling time increased, whereas the YbDS/YbMS EBC displayed negligible microstructural evolution. For both EBC systems, thermally grown oxide growth rates in steam were found to increase by approximately an order magnitude compared to dry air oxidation. The (Y/Yb)DS EBC displayed a reduced steam oxidation rate compared to YbDS/YbMS.  相似文献   

9.
《Ceramics International》2023,49(7):10897-10905
In this work, the preparation process of a novel nanostructured Yb2Si2O7 feedstock for plasma-sprayed environmental barrier coatings (EBCs) was explored. Results show that sintering parameter and mass ratio between Yb2O3 and SiO2 significantly affect the solid-state reaction process for the synthesis of Yb2Si2O7 feedstocks. The increase of SiO2/Yb2O3 ratio in the spray-dried granules can reduce the average grain size of β-Yb2Si2O7 phase and the second phase content of the sintered powder. Nanostructured Yb2Si2O7 feedstocks with high content of β-Yb2Si2O7 phase and good sprayability were successfully obtained after plasma treatment. The nanostructured Yb2Si2O7 coatings can be gained using as-synthesized feedstocks via plasma spraying, which verifies the applicability of nanostructured Yb2Si2O7 feedstocks.  相似文献   

10.
The oxygen permeability of ytterbium disilicate (YbDS) topcoat (TC) and silicon dioxide (SiO2) thermally grown oxide (TGO) is evaluated. The primary goal is to elucidate the oxidation mechanisms in environmental barrier coatings (EBCs). For this purpose, oxidant diffusion is investigated using physics-based and numerical modeling. The oxygen permeability constants are systematically evaluated and quantified in terms of thermodynamics using defect reactions and the parabolic rate constant (kp), respectively. Dry oxygen and wet oxygen conditions as well as different temperatures, partial pressures, and topcoat modifiers are investigated. The results offer evidence that the oxygen permeability constant for the YbDS topcoat is an order of magnitude higher than for the TGO. As such, the TGO hinders the oxidant diffusion stronger, proving to be the diffusion rate-controlling layer. Moreover, water vapor strongly increases the oxidant permeation with defect reactions playing a key role. It is suggested that the mass transfer through the topcoat is primarily by outward ytterbium ion diffusion and inward oxygen ion movement, with the latter being dominant, particularly in wet environments. The effect of topcoat modifiers on oxidant permeation is composition sensitive and seems to be related to their interaction with oxygen ions and their mobility.  相似文献   

11.
Hot corrosion behavior was evaluated by gadolinium monosilicate (Gd2SiO5) with volcanic ash for environmental barrier coatings (EBCs). Sintered Gd2SiO5 was prepared by the spark plasma sintering (SPS) method at 1400 °C for 20 min, and high-temperature corrosion resistance against of volcanic ash was evaluated at 1400 °C for 2 h, 12 h, and 48 h. The surface region of sintered Gd2SiO5 was partially dissolved in molten volcanic ash, creating a chemically reacted area. The formation of the elongated morphology of Ca2Gd8(SiO4)6O2 grains observed in the reaction area is thicker with increasing heat-treatment time as the volcanic ash dissolves. In addition, high-temperature X-ray diffraction was carried out to identify the dynamics of phase evaluation in the volcanic ash and Gd2SiO5. According to the results, corrosion occurs due to reaction of the Gd2SiO5 phase and the Ca component of volcanic ash at 1300 °C, and the Ca2Gd8(SiO4)6O2 phase is generated.  相似文献   

12.
The use of Ceramic Matrix Composites (CMCs) in the hottest part of an aero engine promises great improvements in fuel efficiency by decreasing component weight and allowing higher gas inlet temperatures. However, an environmental barrier coating (EBC) is required to protect the CMC from the corrosive water vapour contained in the combustion environment.Here, CMC specimens were coated with a silicon bond coat and ytterbium disilicate (Yb2Si2O7) layer using air plasma spraying. The specimens were subsequently exposed to a water steam environment at 1350 °C for hundreds of hours. Stress evolution and phase stability were measured throughout to observe possible degradation. Cross-sectioning of the samples revealed the occurrence of sintering, the formation of a thermally grown oxide along the silicon/EBC interface, and a reaction between the ytterbium disilicate and silica. However, no coating failure was observed, even after 750 h of isothermal exposure to the hot steam environment.  相似文献   

13.
《Ceramics International》2023,49(12):19840-19850
In this work, novel equiatomic high entropy (Dy1/4Ho1/4Tm1/4Yb1/4)2Si2O7 or (4RE1/4)2Si2O7 ceramic pyrosilicate was fabricated through a single solid solution method to use as environmental barrier coating. The SEM analysis of high entropy powders shows the homogenous mixing and XRD proves the formation of single β-phase after milling and sintering. The coefficient of thermal expansion was reported as (2.3–4.8 × 10−6 K−1) from 400 K−1 to 1723 K−1. The ultra-low thermal diffusivity (0.4 mm2 s−1) and thermal conductivity (0.8 W/m°C) were reported at 1500 °C for this novel HE ceramic disilicate. The as fabricated (4RE1/4)2Si2O7 pyrosilicate shows an excellent CMAS resistant for even up to 48 h and negligible amount of Ca is able to penetrate in the substrate. Rare earth disilicate species with intermediate radii such as Tm3+ helps in maintaining phase stability along with passive element Yb3+ of smaller radii which also protect the interface from severe CMAS attack. However, the rare earth species with larger radii such as Dy3+ and Ho3+ actively take part in apatite formation leading to reduced corrosion activity of CMAS melt by changing its composition. This result confirms the application of (4RE1/4)2Si2O7 as a potential candidate to be used as protecting coating material in harsh combustion environments.  相似文献   

14.
A new tri‐layer Yb2SiO5/Yb2Si2O7/Si coating was fabricated on SiC, C/SiC, and SiC/SiC substrates, respectively, using atmospheric plasma spray (APS) technique. All coated samples were subjected to thermal shock test at 1350°C. The evolution of phase composition and microstructure and thermo‐mechanical properties of those samples before and after thermal shock test were characterized. Results showed that adhesion between all the 3 layers and substrates appeared good. After thermal shock tests, through microcracks which penetrated the Yb2SiO5 top layer were mostly halted at the Yb2SiO5‐Yb2Si2O7 interface and no thermal growth oxide (TGO) was formed after 40‐50 quenching cycles, implying the excellent crack propagation resistance of the environmental barrier coating (EBC) system. Transmission electron microscopy analysis confirmed that twinnings and dislocations were the main mechanisms of plastic deformation of the Yb2Si2O7 coating, which might have positive effects on crack propagation resistance. The thermal shock behaviors were clarified based on thermal stresses combined with thermal expansion behaviors and elastic modulus analysis. This study provides a strategy for designing EBC systems with excellent crack propagation resistance.  相似文献   

15.
Y2SiO5 is a promising material for the thermal barrier coatings due to its low thermal conductivity, high temperature stability and exceptional resistance for molten silicate attack. However, it suffers low fracture toughness and low coefficient of thermal expansion compared with yttria-stabilized zirconia (YSZ). In this study, a composite coating approach, i.e., incorporating YSZ into Y2SiO5 coating, was employed to overcome those limitations. The double-layered Y2SiO5-YSZ/YSZ coatings were fabricated using atomospheric plasma spraying and tested under thermal cycling at 1150 °C. The phase compositions, microstructure, mechanical properties and the failure behavior were evaluated. It was found that the amorphous phase during spraying would crystallize at high temperature accompanied by volume shrinkage, leading to cracks and spallation in the coating. With YSZ addition, the composite coatings exhibited a much longer lifetime than the single phase Y2SiO5 coating due to a lower volume shrinkage and enhanced toughness.  相似文献   

16.
Environmental barrier coatings (EBCs) prevent the oxidation of ceramic matrix composites (CMC), which are used as components in gas turbines. However, EBCs deteriorate more rapidly in real environments, molten silicate deposits accelerate the deterioration of EBCs. In this study, high-temperature behavior sintered Gd2Si2O7 with calcia-magnesia-alumina-silica (CMAS) melt at 1400 °C for 0.5, 2, 12, 48, and 100 h was investigated. HT-XRD results showed that at 1300 °C, CMAS and Gd2Si2O7 chemically reacted to form Ca2Gd8(SiO4)6O2 (apatite). The reaction layer became thicker as the heat-treatment time increased, and the thickness of the reaction layer has increased following a parabolic curve. With the extension of the reaction time from 0.5 to 100 h, the thickness of the reaction layer increased from approximately 98 to 315 µm. It was confirmed that Ca2Gd8(SiO4)6O2 grew vertically on the Gd2Si2O7 surface. Vertical and horizontal cracks were found after reacting at 1400 °C for 100 h, but no interfacial delamination occurred in this study. In addition, the effects of CaO:SiO2 molar ratios, monosilicates (RE2SiO5) and disilicates (RE2Si2O7), heat-treatment time, and cation size were determined and compared with the results of previous studies (Gd2SiO5, Yb2SiO5, and Er2Si2O7).  相似文献   

17.
《Ceramics International》2022,48(16):23127-23136
To improve high-temperature bearing capability of coatings, novel agglomerated Si-HfO2 powders were prepared by adding HfO2 powders into original Si powders by spray drying method. Three-layer environmental barrier coatings (EBCs) with Si-HfO2 bond layer, Yb2Si2O7 intermediate layer and Yb2SiO5 surface layer were prepared on SiC ceramic substrates by atmospheric plasma spraying (APS). The high temperature properties of coatings were systematically investigated. The results indicated that the coatings had good high temperature oxidation resistance, and remained intact after being oxidized or steam corrosion at 1400 °C for 500 h, so the addition of HfO2 improved the thermal cycling performances of the coating. The HfO2 in Si bond coating could effectively inhibit the growth of thermal grown oxide at high temperatures. This work indicates that the high temperature properties of the coatings are improved by this novel EBCs using the novel agglomerated Si-HfO2 powders.  相似文献   

18.
《Ceramics International》2022,48(11):15657-15667
As the operating temperature of advanced gas turbines typically exceeds 1400 °C, it has been required to replace conventional Si bond coat in environmental barrier coatings (EBCs) with materials possessing higher thermal stability. Since HfSiO4 has excellent thermal properties such as a high melting point, phase stability over 1400 °C, and CTE matches with that of the SiC-based ceramic matrix composites, it has attracted much attention as a next-generation bond coat material. In this study, HfSiO4 bond coat was successfully formed by atmospheric plasma spray with pre-mixed HfO2-SiO2 powders (molar ratios: 7:3 and 5:5) followed by heat treatment. Effect of molar ratios of the HfO2-SiO2 and post-heat treatment temperature (1375 and 1475 °C) on the formation of HfSiO4 were studied. An oxidation test of the HfSiO4 coating was carried out at 1475 °C with the conventional Si bond coat to verify whether the new bond coat was suitable for use in a thermal environment of 1400 °C or higher. From the results, the HfO2/SiO2 ratio of 5:5 was suitable for the formation of HfSiO4 than that of 7:3. After heat treatment at 1475 °C, the ratio of HfSiO4 phase was 84.35%. The higher content of HfSiO4 formed under 1475 °C, meaning the higher heat treatment temperature accelerated the HfSiO4 formation. In the oxidation test at 1475 °C, the new HfSiO4 bond coat showed no cracks and maintained its integrity, but the Si bond coat was oxidized and cracked severely. Therefore, it can be concluded that the new HfSiO4 bond coat formed from 5HfO2–5SiO2 coating is a potential candidate as a next-generation bond coat material in EBCs.  相似文献   

19.
The oxidation of SiC and the formation of a thermally grown oxide layer (TGO) limit the lifetime of environmental barrier coatings. Thus, this paper focuses on the deposition of denser Yb2Si2O7 coatings using electrophoretic deposition to reduce the TGO growth rate. The findings showed densification for Yb2Si2O7 can be achieved with an optimized sintering profile (heating/cooling rate, temperature, and time). However, the addition of 1.5 wt% of Al2O3 to Yb2Si2O7 promoted densification and lowered the required sintering temperature, 1380 °C using 2 °C/min heating/cooling rate for 10 h provided efficient coating density. Moreover, adding Al2O3 reduced the TGO growth rate by more than 70 % compared to the Al2O3-free coatings, without cracking in TGO after 150 h of thermal ageing at 1350 °C. Results within this study suggest electrophoretic deposition with Al2O3 addition produces promising Yb2Si2O7 environmental barrier coatings on SiC substrate with low oxidation rates and increased lifetime.  相似文献   

20.
《Ceramics International》2020,46(17):27292-27298
A Yb2SiO5/mullite/Si tri-layer environmental-barrier-coating (EBC) were coated on SiCf/SiC substrates via Air Plasma Spraying (APS). The thermal cycle tests (TCT) were conducted under thermal corrosive condition of vapor-oxygen (50 vol% H2O and 50 vol% O2) with thermal shock from 1200 °C to 200 °C. Microstructures, weight loss and bonding strength of the samples were systemically investigated after 101, 396, 606 and 700 TCT cycles respectively. The results show that the corner of the tri-layer coating peel off from the sample with weight loss of 1.3% after 700 TCT cycles. The bonding strength between substrate and tri-layer coatings gradually decreases to 6.79 MPa (approximately 55.2% of virgin specimens) after 700 cycles due to thermal shock induced cracks distributed horizontally within Si layers and between Si layer and outer layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号