首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, crystal structure and microwave dielectric properties of phosphate CaMgP2O7 were comprehensively investigated. As a novel microwave dielectric ceramic, CaMgP2O7 consists of highly dense structure with optimal microwave dielectric properties (εr = 7.8 ± 0.124, Q×f = 13,165 ± 836 GHz, and τf = −85.04 ± 1.205 ppm/℃) at a low sintering temperature (950 ℃). The Rietveld refinement of XRD patterns revealed that CaMgP2O7 belongs to a triclinic system with P-1 symmetry type. Moreover, the substitution of Zn2+ for Mg2+ in CaMgP2O7 can further reduce the sintering temperature, effectively promote the densification process, and improve the Q×f value. The effects of porosity (or density) and chemical bond characteristics on the performance of CaMg1-xZnxP2O7 ceramics were carefully analyzed as well. Outstanding performance (εr = 8.05 ± 0.12, Q×f = 20,670 ± 923 GHz, and τf = −87.59 ± 3.24 ppm/℃) can be achieved for the CaMg0.84Zn0.16P2O7 ceramic sintered at 875 ℃ for 3 h.  相似文献   

2.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

3.
《Ceramics International》2016,42(15):16552-16556
The effect of MgO/La2O3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3−0.3(Sm0.75Nd0.25)AlO3 (7SCT-3SNA) ceramics prepared via conventional solid-state route were systematically investigated. MgO/La2O3 as additives showed no obvious influence on the phase composition of the 7SCT-3SNA ceramics and all the samples exhibited pure perovskite structures. The presence of MgO/La2O3 additives effectively reduced the sintering temperature of 7SCT-3SNA ceramics due to the formation of a liquid phase at a relatively low temperature during sintering progress. The 0.5 wt% MgO doped 7SCT-3SNA sample with 0.5 wt% of La2O3, sintered at 1320 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 45.57, a Q×f value of 46205 GHz (at 5.5 GHz), and τf value of −0.32 ppm/°C, which showed dense and uniform microstructure as well as well-developed grain growth.  相似文献   

4.
《Ceramics International》2022,48(14):20332-20340
Li3PO4 ceramic is a promising microwave ceramic material with low dielectric constant. The effect of Li nonstoichiometry on phase compositions, microstructures, and microwave dielectric characteristics of Li3PO4 ceramics, on the other hand, has been examined infrequently. Therefore, in the first part of this study, the stoichiometry and Li nonstoichiometry compositions based on Li3+xPO4(x = 0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by conventional solid-phase method. The results show that a few nonstoichiometric lithium ions enter the lattice of Li3+xPO4. Compared with the chemical content of Li3PO4, the sintering characteristics, relative dielectric constants and quality factors of Li3+xPO4 ceramics can be improved by slightly excessive Li ions, while the properties of Li3PO4 ceramics can be deteriorated by excessive Li ions. Li3.12PO4 ceramics sintered at 975 °C for 2 h have good dielectric properties (εr = 5.89, Q×f = 44,000 GHz, τf = ?206 ppm/°C). In order to improve its large negative temperature coefficient of resonant frequency, in the following study, rutile nano TiO2 particles were added as τf compensator. Adding TiO2 powders not only effectively improve the temperature stabilities of the multiphase ceramics, but also make the grain growth more uniform. With the increase of TiO2 content from 0.40 to 0.60, τf increases from ?73.5 ppm/°C to +42.3 ppm/°C. The best dielectric property of 0.45Li3.12PO4-0.55TiO2 composite ceramic is εr = 13.29, Q×f = 40,700 GHz, τf = +8.8 ppm/°C.  相似文献   

5.
The Ba2-xCaxMgTi5O13 (0 ≤ x ≤ 0.3) microwave dielectric ceramics were for the first time prepared via a conventional solid-state reaction method. A small amount of Ca2+ can dissolve into the lattice by forming solid solutions with a monoclinic structure (C2/m) and further influence the sintering behavior, grain growth and microwave dielectric properties of Ba2-xCaxMgTi5O13 ceramics. Both increase of εr and decrease of Qxf with x should be associated with increased lattice distortion and uneven grain growth although the sample density and the ratio of the ionic polarizability to the molar volume show little variation. Moreover, the A-site bond valence and τf indicate a close relation in current study, such that the Ca2+substitution can induce an increase of τf values. The optimum microwave dielectric properties of εr ∼ 29.3, Qxf ∼ 30,870 GHz (6.5 GHz), and a near-zero τf ∼ +2.1 ppm/°C can be contained in the x = 0.15 ceramic sintered at 1160 °C.  相似文献   

6.
Complex pyrophosphates compounds have attracted much attention as promising candidates for substrate applications. In the work, a low-permittivity BaZnP2O7 ceramic was synthesized through solid-state reaction. The pure phase BaZnP2O7 was crystallized in the triclinic P−1 space group. Excellent microwave dielectric properties of the BaZnP2O7 ceramic with εr = 8.23, Qf = 56170 GHz, and τf = −28.7 ppm/°C were obtained at 870°C for 4 h. The substitution of Mg2+ for Zn2+ was found to have positive effects on grain morphology and dielectric properties. Optimized performance of εr = 8.21, Qf = 84760 GHz, and τf = −21.9 ppm/°C was yielded at 900°C for the BaZn0.98Mg0.02P2O7 ceramic. Intrinsic dielectric properties of BaZn1-xMgxP2O7 ceramics were studied via Clausius–Mossotti equation and complex chemical bond theory.  相似文献   

7.
A new ultralow-loss Sr2CeO4 microwave dielectric ceramic was prepared via a conventional solid-state method. The X-ray diffraction and Rietveld refinement results demonstrate that pure-phase Sr2CeO4 ceramics belong to the orthorhombic structure with a Pbam space group. Scanning electron microscopy analysis reveals dense and homogeneous microstructure. Optimum microwave dielectric properties of εr = 14.8, Q × f = 172,600 GHz (9.4 GHz) and τf = -62 ppm/°C were obtained as it was sintered at 1270 °C for 4 h. In addition, the substitution of a few amount of Ti4+ for Ce4+ was found to have significant influences on the grain morphology, sintering behavior, phase structure and microwave dielectric properties. Among them, the Sr2Ce0.65Ti0.35O4 ceramic sintered at 1350 °C for 4 h demonstrates near-zero τf of -1.8 ppm/°C, εr of 20.7 and Q×f of 115,550 GHz (8.1 GHz) because of its two-phase structure, showing large application potentials.  相似文献   

8.
A novel low-temperature co-fired ceramic Li2SrSiO4 with low-εr and high-Q was synthesized through solid-state reaction. XRD results showed that the Li2SrSiO4 ceramic formed a single hexagonal structure with a space group of P3121. The microwave dielectric properties of Li2SrSiO4 ceramic sintered at 880 °C were εr = 7.4 ± 0.1, Q × f = 100,700 ± 2000 GHz, and τf = −85.4 ± 2.4 ppm/℃. The PVL chemical bond theory indicated that the low sintering temperature of Li2SrSiO4 ceramic might be ascribed to the weak covalency (18 %) of SiO bond. A near-zero τf (‒1.9 ± 1.8 ppm/℃) combined with εr = 8.2 ± 0.1, and Q × f = 63,200 ± 1900 GHz was obtained by adding SrTiO3 to form 0.94Li2SrSiO4 - 0.06SrTiO3 composite ceramic. Given their chemical compatibility with Ag powders, the Li2SrSiO4 ceramics can be a candidate dielectric material for LTCC applications.  相似文献   

9.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

10.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   

11.
Ultra-low firing microwave dielectric ceramic Pb2MoO5 with monoclinic structure was prepared via a conventional solid state reaction method. The sintering temperature ranged from 530 °C to 650 °C. The relative densities of the ceramic samples were about 97% when the sintering temperature was greater than 570 °C. The best microwave dielectric properties were obtained in the ceramic sintered at 610 °C for 2 h with a permittivity ∼19.1, a Q × f value about 21,960 GHz (at 7.461 GHz) and a temperature coefficient value of −60 ppm/°C. From the X-ray diffraction, backscattered electron image results of the co-fired samples with 30 wt% silver and aluminum additive, the Pb2MoO5 ceramics were found not to react with Ag and Al at 610 °C for 4 h. The microwave dielectric properties and ultra-low sintering temperature of Pb2MoO5 ceramic make it a promising candidate for low temperature co-fired ceramic applications.  相似文献   

12.
《Ceramics International》2022,48(13):18651-18657
Four control experiments (S1: Y3Al5O12, S2: Y3Al5O12+1 wt%Nb2O5, S3: Y3Al4.955Nb0.045O12, S4: Y2.955Al5Nb0.045O12) were designed to investigate the co-effects of Nb2O5 and non-stoichiometry on the microwave dielectric properties of Y3Al5O12. The beneficial results of Nb2O5 doping are demonstrated based on X-ray patterns, electron diffraction information, Rietveld refinement, and micromorphological characterization. Differences in dielectric properties were explored using lattice defects, ion polarizability, bond valence, and Raman spectroscopy. In contrast, the Y-deficient sample (S4) possesses the best dielectric properties (εr ~ 10.37, Q × f ~ 161,724 GHz and τf ~ -33.8 ppm/°C).  相似文献   

13.
The structure and microwave dielectric properties of Sr2(Ti1-xSnx)O4 ceramics were determined in the entire composition range of x?=?0–1.0. X-ray diffraction patterns and Raman spectra indicated a composition-induced onset of octahedral tilting at x?=?0.75, and the crystal structure transformed from tetragonal (I4/mmm) to orthorhombic (Pccn). An obvious change of grain morphology was observed in the phase transformation region as well. The variations of the microwave dielectric properties with composition were systematically investigated and the effect of octahedral tilting on the evolution of τf value was emphasized. Moreover, the relationship between τε and tolerance factor of the present ceramics was revealed and compared with the empirical rule in perovskite structure. The role of tolerance factor in designing the materials with required performance was highlighted.  相似文献   

14.
《Ceramics International》2023,49(1):335-344
This work prepared a novel Sr2CaMoO6 (SCM) ceramic through the conventional solid-state process. The crystal structure, chemical bond characteristics, and microwave dielectric properties of SCM ceramic were investigated for the first time. The X-ray diffraction patterns and Rietveld refinement indicate that SCM ceramic formed an orthorhombic phase with the space group Pmm2 (25) at temperatures above 1300 °C. The lattice vibrational modes of SCM ceramic were obtained through the Fourier transformed infrared spectrum (FTIR). The measured dielectric constant and dielectric loss of SCM ceramic is close to the theoretical values obtained by FTIR. According to the P–V–L theory, the chemical bond characteristics of SCM ceramic were calculated. The high ionicity and lattice energy of the Mo–O bond positively affect the properties of SCM ceramic. The outstanding microwave dielectric properties of εr = 19.37, Q·f = 32,970 GHz (at 5.96 GHz), and τf = ?32.56 ppm/°C were obtained in SCM ceramic sintered at 1450 °C. This work reveals the crystal structure of SCM ceramic, establishes the relationship between the properties and chemical bonds of the ceramic, and lays a foundation for studying the dielectric properties of related ceramic systems.  相似文献   

15.
The novel ultra-low temperature sintering (1-x)Na2Mo2O7-xNa0.5Bi0.5MoO4 ceramics have been obtained via solid-state reaction method for passive integration use. The Na2Mo2O7 and Na0.5Bi0.5MoO4 crystal phases are found to be compatible with each other from the results of XRD and SEM-EDS. With the x value changing from 0.36 to 1.00, the εr increases from 16.0 to 32.0 and the τf value varies from ?58 to 47 ppm/°C. At x = 0.75, the 0.25Na2Mo2O7-0.75Na0.5Bi0.5MoO4 ceramic sintered at an ultra-low sintering temperature of 580 °C can be densified (>96%) and possesses good microwave dielectric properties of an εr of 24.0, a Q × f value of 13,000 GHz (at 6.2 GHz), and a τf value of 3 ppm/°C. The theoretical εr and τf of the (1-x)Na2Mo2O7-xNa0.5Bi0.5MoO4 composites were calculated using the mixing law and in accordance with the measured values.  相似文献   

16.
Sr3(Ti1-xSnx)2O7 (x = 0–1.0) ceramics were prepared via a standard solid-state reaction method. X-ray diffraction patterns and Rietveld refinement results indicated a composition induced onset of octahedral tilting when x > 0.2, and the crystal structure transformed in sequence: tetragonal (I4/mmm) → coexistence of tetragonal and orthorhombic (I4/mmm + Amam) → orthorhombic (Amam). The τf value could be successfully tuned towards zero and the effects of octahedral tilting on the evolution of τf value were emphasized. Meanwhile, the role of tolerance factor in tailoring the resultant τε of the present ceramics was revealed and compared with the empirical rule for complex perovskites. Qf value decreased monotonously with increasing x, which could be elucidated by the variations of extrinsic parameters and intrinsic dielectric loss extrapolated from the infrared reflectivity spectra. The optimum microwave dielectric properties were achieved at x = 0.8 (εr = 18.6, Qf = 45,250 GHz, τf =–14 ppm/oC).  相似文献   

17.
Novel low-fired Li4Mg2NbO6F ceramics were synthesised using a conventional solid-state reaction method. X-ray diffraction and Rietveld refinement confirmed that the Li4Mg2NbO6F compound had a face-centred-cubic rock salt structure [Fm-3 m(225)] above 625 °C. Li4Mg2NbO6F ceramics sintered between 875 °C and 950 °C displayed the optimised density (> 97.5 %). The theoretical εtheo was calculated based on the refined crystal parameters, closing to the measured εr. The ceramic sintered at 900 °C exhibited excellent microwave dielectric properties with εr of 15.53 ± 0.03, Q × f value of 93,300 ± 1100 GHz (at 7.7 GHz) and τf value of ?39.8 ± 0.8 ppm/°C. The compatibility with Ag powders makes the oxyfluoride a potential candidate for LTCC applications.  相似文献   

18.
《Ceramics International》2022,48(20):30101-30106
A type of rare-earth tantalite ceramic NdTaO4 was synthesized by the solid-state reaction method and investigated for the relationship between the structure and microwave dielectric properties for the first time. X-ray diffraction and Rietveld refinement confirmed that an M-fergusonite phase was formed. The dense micromorphology and uniform grain distribution obtained at 1500 °C are advantageous for the microwave dielectric properties. Based on the different bonding properties in the crystal, we investigated the dependence between the crystal structure and the dielectric properties of NdTaO4, where the ionicity of Nd–O bond in the crystal structure mainly determines the dielectric constant compared with Ta–O bond, and the lattice energy of Ta–O contributes significantly to the quality factor, the TaO4 and NdO8 polyhedron contributes collectively to the thermal stability. The optimum microwave dielectric properties were obtained for 1500 °C - sintered samples: εr = 18, Q × f = 13,000 GHz (at 8.9 GHz), τf = ?21 ppm/°C.  相似文献   

19.
《Ceramics International》2022,48(8):10713-10720
Ba2Ti9O20 (short for B2T9) ceramics doped with 0.9 mol% MnO2 and y mol% WO3 were prepared by solid-state reaction. The influence of sintering temperature, content of WO3 dopant and the molar ratio x of TiO2: BaCO3 on crystal structure, microstructures as well as microwave dielectric properties of B2T9 ceramics was systematically investigated. The major phase of all samples is B2T9, and the minor phase is BaWO4, respectively. The content of impurity TiO2 alternates with the variation of compositions and sintering temperature, which also leads to different microwave dielectric properties. With the continuous increase of the sintering temperature, the B2T9 phase grains gradually grow larger and transform from rod grains to plate-like grains. The enlargement and flattening of grains also result in the decrease of compactness and deterioration of microwave dielectric properties. It is found that B2T9 ceramics possess better performance when the sintering temperature is 1340°C, which is related to lower TiO2 content, BaWO4, B2T9 grain size, aspect ratio of B2T9 phase and high compactness. When x = 4 and y = 0.2, the relative dielectric constant, quality factor and the temperature coefficient of resonant frequency are 38, 23758 and 7 ppm/°C, respectively.  相似文献   

20.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号