首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
《Ceramics International》2016,42(15):16552-16556
The effect of MgO/La2O3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3−0.3(Sm0.75Nd0.25)AlO3 (7SCT-3SNA) ceramics prepared via conventional solid-state route were systematically investigated. MgO/La2O3 as additives showed no obvious influence on the phase composition of the 7SCT-3SNA ceramics and all the samples exhibited pure perovskite structures. The presence of MgO/La2O3 additives effectively reduced the sintering temperature of 7SCT-3SNA ceramics due to the formation of a liquid phase at a relatively low temperature during sintering progress. The 0.5 wt% MgO doped 7SCT-3SNA sample with 0.5 wt% of La2O3, sintered at 1320 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 45.57, a Q×f value of 46205 GHz (at 5.5 GHz), and τf value of −0.32 ppm/°C, which showed dense and uniform microstructure as well as well-developed grain growth.  相似文献   

2.
BaAl2?2x(ZnSi)xSi2O8 (x = 0.2–1.0) ceramics were prepared using the conventional solid-state reaction method. The sintering behaviour, phase composition and microwave dielectric properties of the prepared compositions were then investigated. All compositions showed a single phase except for x = 0.8. By substituting (Zn0.5Si0.5)3+ for Al3+ ions, the optimal sintering temperatures of the compositions decreased from 1475 °C (x = 0) to 1000 °C (x = 0.8), which then slightly increased to 1100 °C (x = 1.0). Moreover, the phase stability of BaAl2Si2O8 was improved. A novel BaZnSi3O8 microwave dielectric ceramic was obtained at the sintering temperature of 1100 °C. This ceramic possesses good microwave dielectric properties with εr = 6.60, Q × f = 52401 GHz (at 15.4 GHz) and τf = ?24.5 ppm/°C.  相似文献   

3.
    
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

4.
    
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

5.
BaLi1+xF3+x (x = 0–0.01) were successfully mechanosynthesized by a simple ball-milling process. The effects of excessive LiF and sintering method and/or annealing atmosphere on its sintering behavior, microstructure, and microwave dielectric properties have been investigated in this paper. The mechanosynthesized powder can be densified with relative densities of ∼95 % after sintering at 750–800 °C/2 h in N2. The obtained ceramics exhibit excellent optimized microwave dielectric properties with εr of ∼11.46 ± 0.06, Q×f values of 83175 ± 1839 GHz and τf of ∼ − 70 ± 3 ppm/°C at the x = 0.006 composition. Its Q×f value could be improved to 94603 ± 2037 GHz) by post-annealing in N2 after post annealing at 700 °C/2 h. The Q×f value could be further improved to (120,098 ± 2344 GHz) by hot-pressed sintering (HPS). Sintering in the ambient atmosphere or O2 leads to lower Q×f values than those of the counterparts sintered in N2 due to the introduction of F-vacancies by oxidation, while little variation in εr andτf.  相似文献   

6.
《Ceramics International》2015,41(6):7783-7789
YAG ceramics with good dielectric properties were prepared via a modified pyrolysis method, with yttrium nitrate as the yttrium source and combined aluminium sulphate and aluminium nitrate as aluminium sources, and subsequent sintering in a muffle furnace. The effects of the different aluminium sources on the powder characteristic and the impact of sintering temperature, sintering aids (TEOS) and additive (TiO2) on the dielectric properties of the ceramics were studied. The results show that well-dispersed pure YAG nano-powders can be obtained after calcination at 1000 °C with an aluminium sulphate and aluminium nitrate molar ratio of 1.5:2. The relative density, permittivity (εr) and quality factor (Q×f) of the YAG ceramics increase with sintering temperature and TEOS addition. TiO2 can greatly promote τf to near-zero but decreases Q×f. The relative density, εr, Q×f and τf of the YAG–1 wt% TEOS–1 wt% TiO2 ceramic obtained at 1520 °C are 97.6%, 9.9, 71, 738 GHz and −30 ppm/°C, respectively.  相似文献   

7.
    
Li2.08TiO3-LiF Glass-free Low temperature co-fired ceramic (LTCC) green tapes were prepared by tape casing technique. The rheology of the slurry was characterized using rheometer. The slurry exhibited pseudoplastic behavior. The sintering kinetics of the green tape was investigated using heating microscope. The sintering activation energy was determined to be ∼173 kJ/mol. The green tape could be densified at 900 °C/2 h. Microwave dielectric properties of the sintered tape were characterized in a split-post dielectric resonator using a network analyzer. The ceramic sheet with thickness of 0.11 mm demonstrated good microwave dielectric properties: εr = 22.4 and Q × f = 35,490 GHz. The cross sectional microstructure of the cofired multilayer stack was observed by scanning electron microscopy (SEM). The green tape demonstrated good chemical and shrinkage compatibilities with Ag electrode during sintering process. The thermal expansion coefficient and thermal conductivity of the ceramic is 22.4 ppm/∘C and 4.75 W m−1 K −1, respectively.  相似文献   

8.
The effect of the B2O3 addition on the low-temperature sintering, microstructure and microwave dielectric properties of the Ba3(VO4)2–Zn1.87SiO3.87 composite ceramics was investigated. The results indicate that the addition of B2O3 can effectively promote the densification and further improve the microwave dielectric properties of the composite. The low-temperature sintering mechanism was ascribed to the formation of the liquid phase owing to the reaction between the additive B2O3 and the residual SiO2 in the composite. B2O3–SiO2 liquid phases can not only lower the sintering temperature, but also speed up the grain growth of the composite ceramics. The rapid grain growth occurs as the B2O3 content is more than 6 wt%. The 3 wt% B2O3 doped 0.5Ba3(VO4)2–0.5Zn1.87SiO3.87 ceramics can be well sintered at 925 °C and exhibit excellent microwave dielectric properties of Q×f∼40,800 GHz, εr∼10 and τf∼0.5 ppm/°C.  相似文献   

9.
    
《Ceramics International》2016,42(13):14573-14580
BaO-Sm2O3-5TiO2 (BST5) ceramics with NdAlO3 additions of up to 15 wt% were produced with a solid state reaction method, and their structural and microwave dielectric properties were determined. Experimental results showed that NdAlO3 neither merged nor altered the orthorhombic tungsten bronze structure of the main phase of the produced ceramics (except for a shrinkage in the crystal lattice), but it was segregated in distinct grains in the microstructure of the produced ceramics. However, the amount of NdAlO3 strongly influenced the densification and the microstructure (i.e. grain shape and size) of the produced ceramics. Analysis of the experimental results suggests that the microstructural features can be correlated to the dielectric properties of these ceramics. Accordingly, the dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) of the produced BLT5 ceramics can be tuned with the amount of NdAlO3 additions and the sintering process parameters. The best dielectric properties were achieved for BaO-Sm2O3-5TiO2 ceramics with 7.5% NdAlO3r=73.22, Q×f =10,300 GHz, and τf=−1.05 ppm/°C).  相似文献   

10.
    
Ultra-low firing microwave dielectric ceramic Pb2MoO5 with monoclinic structure was prepared via a conventional solid state reaction method. The sintering temperature ranged from 530 °C to 650 °C. The relative densities of the ceramic samples were about 97% when the sintering temperature was greater than 570 °C. The best microwave dielectric properties were obtained in the ceramic sintered at 610 °C for 2 h with a permittivity ∼19.1, a Q × f value about 21,960 GHz (at 7.461 GHz) and a temperature coefficient value of −60 ppm/°C. From the X-ray diffraction, backscattered electron image results of the co-fired samples with 30 wt% silver and aluminum additive, the Pb2MoO5 ceramics were found not to react with Ag and Al at 610 °C for 4 h. The microwave dielectric properties and ultra-low sintering temperature of Pb2MoO5 ceramic make it a promising candidate for low temperature co-fired ceramic applications.  相似文献   

11.
ZnO和Na2O对CaO-B2O3-SiO2介电陶瓷结构与性能的影响   总被引:10,自引:0,他引:10  
研究了烧结助剂ZnO和Na2 O对CaO -B2 O3 -SiO2 (CBS)系微波介质陶瓷介电性能、相组成及结构特性的影响。烧结助剂ZnO在烧结过程中与B2 O3 及SiO2 生成低熔点玻璃相 ,有效地降低了材料的致密化温度 ,烧结机理为液相烧结。碱金属氧化物Na2 O虽然能够有效降低材料的烧结温度 ,但会破坏硅灰石晶体结构 ,引起材料微波性能显著降低。通过实验 ,制备出了具有优良微波介电性能的陶瓷材料 ,适用于LTCC基板及滤波器等高频微波器件的生产  相似文献   

12.
The microwave dielectric properties and the microstructures of 0.5LaAlO3–0.5SrTiO3 ceramics with CuO addition prepared with conventional solid-state route have been investigated. Doping with CuO (up to 1 wt.%) can effectively promote the densification and remain comparable dielectric properties of 0.5LaAlO3–0.5SrTiO3 ceramics. It is found that 0.5LaAlO3–0.5SrTiO3 ceramics can be sintered at 1400 °C due to the sintering aid effect resulted from CuO as addition observed by scanning electron microscopy. The dielectric constant as well as the Q×f value decreases with increasing CuO content. At 1460 °C, 0.5LaAlO3–0.5SrTiO3 ceramics with 0.25 wt.% CuO addition possess a dielectric constant (r) of 35.2, a Q×f value of 24 000 (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −13.5 ppm/°C.  相似文献   

13.
    
《Ceramics International》2022,48(7):9407-9412
Ca1-xBaxMgSi2O6(x = 0–0.4) ceramics were prepared through a traditional solid-state reaction sintering route with various sintering temperatures. The effects of substituting Ba2+ for Ca2+, the relative density, phase composition, crystal morphology, and microwave dielectric properties of Ca1-xBaxMgSi2O6 (x = 0–0.4) ceramics were thoroughly studied. X-ray diffraction patterns indicate a single phase was formed in the samples when x ≤ 0.2, and the second phase BaMg2Si2O7 appeared at x = 0.4. As the amount of Ba2+ substitution increases, the Q×f value first increases and then decreases due to the combined effects of FWHM of peak v11 and atomic packing density, and the εr value was increased continuously which was closely corrected with the relative density and molecular polarization. The τf value improved slightly with the substituting Ba2+ for Ca2+. Typically, the Ca0.88Ba0.12MgSi2O6 ceramic can be well sintered at 1275 °C for 4 h with a maximum relative density of 99.3%, and possesses optimal microwave dielectric properties: εr=7.49, Q×f=64310 GHz, τf=-44.02 ppm/°C.  相似文献   

14.
    
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

15.
《Ceramics International》2017,43(4):3688-3692
Li2O-3MgO-mTiO2 (1≤m≤6) ceramics were prepared by the solid state reaction method. X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy techniques were used to investigate the phase composition and crystal structure. With increasing m values, the phase structures of ceramics changed as: (Li2Mg3TiO6, m=1)→(Li2Mg3Ti4O12 and Mg2TiO4, m=2,3)→(Li2Mg3Ti4O12, m=4)→(Li2Mg3Ti4O12, MgTiO3 and Li2MgTi3O8, m=5)→(Li2Mg3Ti4O12, MgTiO3, Li2MgTi3O8 and MgTi2O5, m=6). The optimized sintering temperature was lowered from 1275 °C to 1050 °C. When m=5, Li2O-3MgO-5TiO2 ceramics showed good microwave dielectric properties at a wide sintering temperature range of 1000–1200 °C, and the best microwave dielectric properties of Q×f=71,726 GHz, εr=21.9 and τf=−20.9 ppm/°C were obtained at a relatively low sintering temperature of 1050 °C.  相似文献   

16.
    
  相似文献   

17.
    
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

18.
《Ceramics International》2021,47(22):31506-31511
A novel low-temperature fired BaMnV2O7 ceramic was fabricated with solid-state reaction. Rietveld refinements based on X-ray diffraction data and TEM analysis indicated that BaMnV2O7 exhibited a monoclinic structure with a P21/n space group. The dense microstructure of the BaMnV2O7 ceramic obtained at 850 °C was examined by scanning electron microscopy. The increasing content of V4+ affected the quality factor, which was confirmed by X-ray photoelectron spectroscopy. The intrinsic dielectric properties were obtained from far infrared reflectivity spectra. Additionally, the BaMnV2O7 ceramic showed good chemical stability with a Ag electrode and desirable microwave dielectric performance at 850 °C: ϵr = 11.7, Q × f =20040 GHz and τf = −48.2 ppm/°C, which can potentially be applied in LTCC technology.  相似文献   

19.
    
《Ceramics International》2019,45(15):18937-18942
  相似文献   

20.
(1–x)SiO2–xBPO4 (x?=?23–70?wt%) glass-fluxed ceramics have been prepared by a traditional ceramic process. The phase assemblage, sintering, crystallization behavior, microwave dielectric properties and chemical compatibility with Ag/Cu have been studied. The SiO2-rich compositions (x?=?23–50?wt%) could be well densified at ~975?°C/2?h, while the BPO4-rich compositions demonstrated poor sinterability and porous microstructure. The SiO2-rich compositions sintered at 975?°C/2?h contained BPO4, low temperature cristobalite and glassy phases. Crystallization of BPO4 occurred at lower temperature than that of SiO2. Good combined microwave dielectric properties with ?r?=?~5, Q?×?f?=?25,000?GHz and τf value of –7.3?ppm/°C could be obtained when 10?wt% TiO2 was added after sintering at 975?°C/2?h. The x?=?23?wt% composition chemically reacted with Ag, but exhibited good chemical compatibility with Cu after sintering at 975?°C/2?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号