首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
海底隧道衬砌结构设计   总被引:1,自引:0,他引:1  
 海底隧道围岩水通常具有稳定水位和充足补给,隧道结构受长期的水压力作用,衬砌计算中应首先确定水压力荷载大小,并综合考虑隧道涌水量的大小,由此对衬砌断面的拟定、衬砌类型的选择、衬砌结构安全性进行评价计算。正在建设的厦门翔安海底隧道衬砌结构设计时,通过不同防排水方式下衬砌背后水压力特征的模型试验表明,作用于全封闭衬砌上的水压力是不能折减的;根据陆域和海域不同地段预测全隧道涌水量,由于无法满足运营期间的排水,衬砌结构必须采用全封闭形式或限制排放形式;利用ANSYS有限元软件,根据外水压力大小与围岩压力组合下对不同的隧道衬砌断面进行对比分析计算,以得出结构受力最为经济合理的断面形式;并以此断面按荷载结构模式法进行全封闭衬砌结构计算。计算结果及建设的实际情况表明衬砌受力合理。  相似文献   

2.
青岛胶州湾海底隧道围岩注浆加固技术   总被引:5,自引:0,他引:5  
 针对青岛胶州湾海底隧道施工过程中存在的断层破碎带涌水,通过理论分析、室内和现场试验及实际应用对普通水泥浆、超细水泥浆、特制硫铝酸盐水泥浆及水泥–水玻璃双液浆4种注浆材料进行研究试验,确定以超细水泥为主进行超前预注浆。并经过实践确定并验证注浆关键参数:浆液扩散半径为1.5~2.0 m,注浆终止压力为3~4 MPa,注浆加固厚度为5~6 m。对分段前进、分段后退及全孔一次性注浆3种注浆方式进行试验比选,确定全孔一次性注浆、分段前进为主的注浆方式。在施工过程中,研究开发以三臂凿岩台车和高速制浆机制浆、高压注浆泵注浆、注浆记录仪自动记录注浆参数的信息化钻孔注浆设备配套系统,通过采取分区钻孔、分区注浆、钻注平行作业,实现超前预注浆的信息化快速施工。注浆效果检查以检查孔出水量(检查孔出水量满足设计每延米不大于0.15 L/min且局部出水量小于3 L/min)、检查孔压水试验为主,辅以TSP物探对比法、钻孔电视分析法、开挖揭示法及P-Q-T曲线分析法。经过31段注浆,证明材料、参数、注浆方式的选择是可靠的。  相似文献   

3.
高水压富水区隧道限排衬砌注浆圈合理参数研究   总被引:4,自引:0,他引:4  
海底隧道深埋于海水以下,处于高水压富水区,隧道结构设计时需要考虑外水压力,如果采用"堵水限排"的防排水设计原则,能够以较小的排水量显著降低作用在衬砌上的外水压力,从而使隧道结构设计更加经济。注浆圈合理参数的确定是"堵水限排"的核心问题。基于穿越高水压富水岩溶区的圆梁山隧道工程,通过理论计算和分析,得到了注浆圈参数变化对隧道涌水量和衬砌外水压力的影响规律;提出了隧道排水率的概念,分析了隧道排水率与衬砌外水压力之间的关系。在此基础上提出了确定注浆圈合理参数的方法和程序,给出了圆梁山隧道注浆圈的合理参数值,并在现场得以应用,取得了理想的效果,注浆后实测隧道涌水量与理论计算值基本一致。研究结果表明:衬砌外水压力折减系数取决于隧道排水率,只有当隧道排水系统能够将渗透到衬砌背后的地下水全部排出时,衬砌外水压力才能完全消除;注浆圈的作用不是分担衬砌外水压力,而是通过封堵地下水降低隧道涌水量,从而以较小的排水量可显著降低甚至消除衬砌的外水压力。研究成果对类似高水压富水区以及海底隧道防排水设计具有一定的参考价值和借鉴作用。  相似文献   

4.
 由于海底隧道复杂的地质条件和特殊的水边界,单一的注浆方式和注浆材料不能达到理想的效果,因此提出复合注浆。复合注浆是采用多种注浆方式和注浆材料,根据具体地层条件,按照一定的时空顺序对被注载体进行注浆,其机制在于分步改善工程载荷作用的边界条件,解决围岩的渗透、强度和稳定性问题。基于风化花岗岩地层的特点,利用颗粒流软件对注浆过程进行仿真模拟,揭示复合注浆机制,并提出常见的复合注浆加固模式。结合厦门海底隧道右线F1风化槽复合注浆工程的成功实践,形成风化槽复合注浆堵水关键技术及评价指标,研究成果可为海底隧道安全穿越不良地质体提供参考和指导。  相似文献   

5.
 从长期观察的结果来看,隧道表现出两种不同方式:一种是对于全封闭隧道表现出渗流量的增加;另一种是对于排水隧道表现出的渗流量减少。渗流量的增加有可能超出排水系统排水能力的情况,而渗水的减少则有可能导致衬砌发生不可预测的水压力增加或减小。由于这种渗流量的增加或减少都将对隧道产生不良的影响。因此,在隧道正常运行中,应对隧道周边的地下水进行适当地控制。在隧道安全性评价上,其最重要的因素之一就是研究排水系统劣化而导致衬砌的作用水压力增大(在此称为孔隙水压力)。为了保障隧道的安全运行,应该对此进行严密的监控。然而,对于大部分运行已久的海底隧道而言,其不仅缺乏装备优良的监视系统,甚至连运营仅几年的新隧道也常常出现监测仪器发生故障的问题。以间接和非破坏的方式,通过数值模拟,将所获得的孔隙水压力进行曲线拟合,以便对作用于衬砌的孔隙水压力进行合理地评价。对于给定的隧道内渗流量、地下水位及地基渗透系数,采用本法可以评估孔隙水压力。对于缺乏监测数据和监视系统运行较长的隧道,所提出的方法较为适用,最后通过实例来说明其合理性。  相似文献   

6.
海底隧道衬砌结构选型及参数优化研究   总被引:16,自引:3,他引:16  
海底隧道不同于陆上隧道,海水位变化相对隧道埋深较小,隧道两端出口比海底部分要高,不能采用自然排水。深埋海底隧道二次衬砌承受较大的外水压力。调查了国内外海底隧道衬砌结构型状及支护参数,针对海底隧道的特殊性,归纳了海底隧道设计理念和设计方法。针对某公路海底隧道特定地质条件和工程设计要求,分别采用马蹄形、椭圆形、圆形3种衬砌结构型式,并用有限元软件对这3种衬砌结构二次衬砌在不同荷载作用下进行强度验算。对计算结果优化比选,选出一种技术可行、经济合理的衬砌结构,得出一些有意义的结论。  相似文献   

7.
高压富水区矿山法隧道施工对地下水渗流场的扰动十分明显,容易诱发地下水资源大量流失、地下水位大幅度下降等水环境负效应.以文笔山2号隧道为研究案例,对整个施工流程、施工方法进行必要的总结,以更好地应对隧道施工过程中地下水位变化对施工活动的影响,打造成熟的隧道施工方案.通过对该项目施工经验的总结,逐步明确了注浆圈在实际施工环...  相似文献   

8.
基于连续介质模型的海底隧道渗流问题分析   总被引:2,自引:2,他引:2  
 与普通山岭隧道不同,海底隧道的一个显著的特点就是有着无限的水源对海底隧道进行补给。海底隧道开挖引起的地下水渗流带来两方面的问题:一是结构水荷载的确定问题,二是涌水量的预测问题。将围岩看作各向同性连续介质,针对这两方面的问题进行研究。明确孔隙介质中水压力的实质;根据国内外最新研究成果,针对山岭隧道和海底隧道不同的边界条件,对各向同性渗透系数下平面半无限含水空间圆形隧道稳定渗流的涌水量和水压力分布的解析解进行分析;以青岛胶州湾海底隧道为工程背景,采用数值方法比较应力场对渗流场的影响,以及围岩渗透系数、水深、注浆圈渗透系数和注浆圈厚度的改变对围岩孔隙水压力和洞内涌水量的影响。分析结果表明:隧道开挖的成拱效应对围岩孔隙水压力的分布和洞内涌水量的大小影响不大;在不考虑渗流场和应力场耦合作用、水深一定条件下,渗透系数的改变不会影响毛洞孔隙水压力的分布;隧道洞内涌水量随着围岩渗透系数或围岩上覆海水深度的增大呈线性增大;注浆圈渗透系数的减小和注浆圈厚度的增大都可以达到减小隧道洞内涌水量的目的,在实际施工中应该在注浆的经济性和其堵水效果两方面进行综合分析,确定最优化的注浆参数。  相似文献   

9.
博士学位论文摘要:随着国内铁路路网的完善和发展,需要修建大量深埋长大山岭隧道,在高水压岩溶区修建隧道,这在国内外都是个技术难题,尤其在当今对环保要求较高的条件下,必须改变以往“以排为主、排堵结合”的治水方案,采取“以堵为主、限量排放”的治水方案,在这种背景下,不可避免地遇到高水压问题。因此,研究深埋高地下水位铁路隧道围岩、注浆圈、衬砌背后水荷载的分布规律和高水压的存在对隧道围岩稳定和结构受力的影响具有突出的工程实践应用价值。这些问题已成为当前地下工程(特别是深埋山岭隧道)设计、施工、运营中很关键且无法回避的问题,已经引起各国有识之士的极大关注,是隧道工程研究的前沿和热点问题之一。本文以在建的渝怀线圆梁山深埋特长铁路隧道为工程背景对上述问题进行系统研究。 研究内容与方法如下:(1)在对水工隧道水压力折减系数综合分析的基础上,考虑铁路隧道与水工隧道结构、防排水型式的不同,提出了水压力作用系数的概念。采用室内三维模型试验方法研究均质围岩、裂隙围岩中隧道修建过程中水压力分布变化规律,重点分析衬砌背后和注浆圈外表面水压力及其水压力作用系数与围岩、注浆圈、衬砌的渗透系数、厚度和隧道控制排水量的关系。(2)采用理论分析方法,推导均质围岩中针对铁路隧道防排水型式下注浆圈外表面、衬砌背后水压力理论解析公式,分析衬砌背后水压力与各量之间的关系。通过对地下水渗流场数学模型研究,采用等效连续介质模型用数值方法分析隧道渗流场的分布,对地下水在围岩、注浆圈、衬砌上水压力分布规律及其作用系数进行分析。(3)以圆梁山隧道地质勘测报告为基础,通过分析得出圆梁山隧道的水文地质结构模型、地下水流系统模型、地下水动力模型:特别是对深孔压水和抽水试验成果进行详细分析,得出隧道附近围岩的渗透系数和渗透系数张量,为数值分析和三维室内模型试验围岩渗透系数的取值提供依据;进一步概括得出圆梁山隧道的地下水流数学模型,并将模型试验、理论计算公式、渗流场等效连续介质数值模拟分析得到的水压力分布规律应用于该工程实际。(4)采用数值分析方法研究单线铁路隧道标准衬砌断面形式承受水压力的能力,并结合圆梁山隧道工程对5种不同形状断面进行优化分析。(5)在水压力分布规律研究的基础上,采用数值分析方法分析水压力在衬砌上均匀分布、不均匀分布、局部突水时隧道围岩的稳定性和结构受力特征。 主要研究成果如下:(1)提出水压力作用系数的概念,并采用室内模型试验、理论公式推导、数值分析等方法研究得出注浆圈外表面、衬砌背后水压力分布规律,确定作用在衬砌上水压力荷载的大小;得出水压力作用系数与围岩、注浆圈、衬砌渗透系数、厚度及隧道控制排水量的关系。(2)针对圆梁山隧道工程,给出水压力分布规律模型试验和数值分析结果的工程应用。(3)得出单线铁路隧道标准衬砌断面形式承受水压力的能力值为0.40MPa,经对断面形状进行优化分析得到承受高水压的合理断面形式为蛋形断面或圆形断面,当水压力超过1.5MPa时,采用圆形断面为宜。(4)分析水压力在衬砌上均匀分布、不均匀分布、局部突水时隧道的位移、塑性区、衬砌内力大小和分布特点,运用结构力学上弯矩影响线理论,在突水位置不确定的情况下,提出采用弯矩包络图确定衬砌结构上最大弯矩的方法。  相似文献   

10.
 基于研制的泄水式管片衬砌–围岩泄流装置,采用室内试验方法对某铁路隧道装配式泄水式管片衬砌在高水压条件下衬砌壁后水压力分布规律进行研究,重点探讨单纯限排、堵水限排等不同泄水方案下衬砌壁后外水压力分布规律。分析排泄流量、泄水孔密度、注浆与否对隧道衬砌壁后水压力的影响,揭示隧道衬砌壁后整体和各位置处外水压力折减系数、外水压力大小等与衬砌泄水孔泄流量之间的二次曲线关系。研究结果可为高水压山岭隧道衬砌的设计提供参考。  相似文献   

11.
 采用钻爆法修建海底隧道必须采取有效措施预防塌方、涌水、突泥等地质灾害,海底隧道钻爆法施工时如何安全穿越断层破碎带是工程设计与施工的技术难点。结合厦门跨海峡隧道围岩的特点,研究钻爆法穿越断层破碎带的注浆加固、防排水技术,提出不同围岩条件下的隧道防排水和注浆设计方案。并根据实验室三轴试验结果得到强风化花岗岩渗透系数以及反演的围岩力学参数,分析风化槽隧道衬砌的外水压力分布特点和量值。研究成果为衬砌结构设计以及国内同类型隧道的衬砌防排水和衬砌支护技术设计提供可靠指导。  相似文献   

12.
水下隧道渗流场解析解及其应用   总被引:1,自引:0,他引:1  
 以复变函数和地下水水力学理论为基础,推导由围岩、注浆圈、衬砌混凝土组成的水下隧道渗流场解析解。以厦门海底隧道F4风化囊地段为工程背景,研究影响围岩、注浆圈、衬砌的渗流参数对衬砌外水压力和渗流量的影响。研究结果表明,注浆圈和初期支护施工效果对衬砌后水压力和渗流量的影响很大,应重视注浆圈和初期支护的施工。当排水系统堵塞,渗流量减小时,初期支护和二次衬砌的外水压力会重新分配。结合理论计算和现场实测水压力结果,提出在堵水限排情况下,初期支护水压力可降至静水压力的1/3。  相似文献   

13.
青岛胶州湾海底隧道涌水断层注浆效果综合检验方法研究   总被引:6,自引:1,他引:5  
 采用注浆全过程注浆压力–注浆量–注浆时间(P-Q-t)控制法、物探法、检查孔法与数字钻孔摄像法从宏观到细观对青岛胶州湾海底隧道F4–4涌水断层全断面帷幕注浆后的注浆效果进行检验,其中注浆全过程压力–流量–时间控制法将注浆压力限制在3~4 MPa,当注浆速度小于5 L/min超过20 min时,结束该孔注浆;TSP物探法对注浆前后的含水断层探测结果表明,注浆后围岩整体性得到提高,其变形模量提高19.1%,密度提高3.6%,泊松比下降7.1%,纵波波速VP增长0.8%,纵横波比VP/VS减小7.1%;按注浆孔的5%~10%钻探检查孔,当单孔出水量≤0.15 L/min时,达到注浆要求,满足开挖允许出水量标准;数字钻孔摄像法生成三维虚拟岩芯,计算裂隙充填浆脉的充填隙宽及产状,表明注浆后裂隙充填密实。4种检验方法综合判定含水断层注浆后围岩等级由V级提高到IV级,表明注浆效果良好,达到注浆止水加固的目的,综合检验法是检验注浆效果的有效方法,上述方法对类似工程具有一定的借鉴与指导意义。  相似文献   

14.
厦门翔安海底隧道富水砂层注浆试验   总被引:6,自引:0,他引:6  
 针对我国第一条海底隧道——厦门翔安海底隧道富水砂层段进行注浆试验,采用钻孔取芯和压水的方法对注浆效果进行检验,摸索该条件下的一些注浆规律,提出注浆量、注浆压力、注浆速度、扩散半径等注浆参数。通过试验研究海水对浆液强度的影响。研究结果表明,海水延长初凝时间、减缓浆液强度上升的速度、稀释浆液并加剧不均匀扩散。结合翔安海底隧道施工注浆的经验可以得出,以上几个问题是在海水注浆中值得深入研究的,其研究结果可为厦门海底隧道注浆的设计、施工提供指导,并可为相关工程提供重要的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号