首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
工业纯钛在120°模具中的多道次ECAP室温变形组织与性能   总被引:4,自引:0,他引:4  
在室温,采用通道夹角为120°的变形模具对工业纯钛(Commemial Pure Titanium,CP-Ti)以Bc方式实施四道次ECAP(EqualChannel Angular Pressing)挤压变形,成功获得表面光滑无裂纹的变形试样.文中主要研究了工业纯钛在室温下进行ECAP多道次变形的组织结构演变,并测试了变形试样的力学性能.微观结构显示工业纯钛在室温下进行多道次ECAP变形时,只在前两道次产生了大量的变形孪晶,且随道次增加变形孪晶逐渐消失.最终获得的试样晶粒平均尺寸由最初的约28μm细化到约250 nm,试样断裂强度和显微硬度分别提高到773和2486 MPa,而试样仍保持较好的延伸率(可达16.8%).  相似文献   

2.
在室温下采用等径弯曲通道变形技术(ECAP)对工业纯钛进行2道次(φ=90°)和8道次(φ=120°)挤压变形.利用光学显微镜(OM)和透射电镜(TEM)分析变形前及不同道次后工业纯钛的组织形貌特征.结果表明:ECAP变形1道次后,原始晶粒在剪切力的作用下沿变形方向拉长成板条状;随着变形道次增加,晶粒进一步细化,且出现晶粒从大板条向小板条及等轴晶转化的趋势.  相似文献   

3.
采用两通道夹角Φ=90°,外圆角ψ=20°的模具,实现TA1纯钛C方式4道次室温ECAP(Equal Channel Angular Pressing)变形,制备了表面光滑无裂纹的变形试样。研究纯钛室温ECAP变形试样的织构演变特征。结果表明:在ECAP变形初期,基面织构和锥面织构逐渐向P(φ1=45°,φ=0°~90°,φ2=30°)织构旋转,基面织构和锥面织构减少,柱面织构增加,织构的演变是由位错增殖导致微结构变化引起的。在变形后期因晶粒细化,织构演变主要由整个晶粒的旋转来形成剪切织构,基面织构逐渐增加。  相似文献   

4.
室温下,分别采用90°模具和120°模具对工业纯钛(CP-Ti)进行一道次等径弯曲通道变形(Equal ChannelAngular Pressing,简称ECAP),研究了其组织和硬度的变化情况.结果表明,工业纯钛经一道次ECAP变形后都形成板条状组织,硬度显著提高.90°模具挤压后试样上、下表面的硬度值稍低于试样中间的硬度值,而120°模具挤压后试样表面硬度分布较均匀.  相似文献   

5.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、单向拉伸及显微硬度测试等方法,研究了经室温90°ECAP变形工业纯钛1道次在400、500、600℃退火1h后的组织和性能.结果表明:当退火温度为400℃时,变形组织未发生明显变化,抗拉强度和显微硬度略有降低,伸长率增加;当退火温度高于400℃时,随着退火温度的升高,变形组织发生再结晶,晶粒尺寸增至12μm,工业纯钛的抗拉强度和显微硬度明显降低,伸长率显著提高.工业纯钛的拉伸试样断口均为韧窝型断口,韧窝随退火温度的降低而变得细小、均匀.  相似文献   

6.
室温ECAP工业纯钛组织热稳定性研究   总被引:1,自引:0,他引:1  
采用两通道夹角Φ=120°,外圆角Ψ=20°的模具在室温不采用中间退火条件下成功实现工业纯钛(TA1)高达8道次等径弯曲通道变形,制备出超细晶工业纯钛。研究了室温ECAP工业纯钛的组织热稳定性能。结果表明,ECAP变形后的工业纯钛组织在400℃以下保持较高的硬度,热稳定性较好,而在400℃以上,发生了再结晶,硬度急剧下降,热稳定性变差。  相似文献   

7.
采用有限元软件Deform-3D对室温纯钛等径弯曲通道变形(ECAP)过程进行数值模拟,分析了不同等通道截面形状条件下载荷变化、变形行为以及等效应变分布情况。结果表明:不同截面形状试样随着通道截面圆角增大,端部效应有所增加,试样与出口通道上壁之间的缝隙增大;不同通道截面挤压的行程载荷曲线趋势一致,常用的方形截面(R=0 mm)ECAP挤压时载荷最大;ECAP挤压后,试样纵向上等效应变从中部向两端递减,竖直方向上等效应变从上到下逐渐下降;方形(R=0 mm)和圆形(R=10 mm)截面ECAP挤压的等效应变较高,特别是圆形截面ECAP挤压心部等效应变要高于外表,这有别于其他塑性变形形式。  相似文献   

8.
采用两通道夹角为90°,外圆角为20°的模具,实现了工业纯钛BC方式6道次的ECAP温变形,累积等效真应变达到6.3,并观察分析了变形试样的显微组织.结果表明:工业纯钛经BC方式6道次ECAP温变形后,获得了晶粒尺寸为150 rm的具有大角度晶界的超细晶组织;工业纯钛在ECAP温变形过程中,随变形道次的增加,通过位错滑移产生的板条和不稳定的孪晶组织相互作用,大量的位错聚积成位错胞并生成亚晶;在变形温度的影响下,位错相互作用,使亚晶逐渐演变成具有大角度晶界的超细晶组织.  相似文献   

9.
采用两通道夹角φ=90°,外圆角ψ=20°的模具,成功实现了工业纯钛BC方式6道次ECAP温变形,累积等效真应变达到约6.3,制得ECAP温变形试样后,对各道次ECAP温变形后的工业纯钛进行压下量为55%的冷轧变形.同时,观察分析了变形试样的显微组织及性能,并对各道次ECAP温变形试样的热稳定性进行研究.结果表明,经过6道次ECAP变形后,工业纯钛的抗拉强度达到760MPa,伸长率为40%.当退火温度低于400℃时,ECAP变形试样的组织变化不大,显微硬度下降缓慢;当退火温度高于400℃时,由于发生了再结晶,显微硬度显著下降.  相似文献   

10.
采用等径弯曲通道变形(Equal Channel Angular Pressing,ECAP)技术制备了不同晶粒尺寸的超细晶工业纯钛,通过纳米压痕测试技术对ECAP变形工业纯钛的力学性能进行研究,讨论了加载应变速率和晶粒尺寸对工业纯钛硬度测试结果的影响,进一步分析了ECAP变形工业纯钛的应变硬化能力和残余应力。结果表明:随着加载应变速率的增大和晶粒尺寸的减小,工业纯钛的硬度值增加。硬度-位移曲线表现出具有硬化效应的压痕尺寸效应(Indentation Size Effect,ISE)。纳米压痕形貌表明:ECAP变形工业纯钛的应变硬化能力降低,存在残余压应力。  相似文献   

11.
采用2通道夹角Φ=120°,外圆角ψ=20°的模具,在室温分别采用A方式(相邻道次间试样不旋转)、B方式(相邻道次间,沿试样长度方向旋转90°进入下一道次)及C方式(相邻道次间,沿试样长度方向旋转180°进入下一道次)成功实现工业纯钛2道次等径弯曲通道变形(ECAP),观测分析试样显微组织和力学性能.结果表明:在室温下按不同变形方式进行ECAP变形2道次后,工业纯钛的强化效果基本相同.第1道次所形成的变形组织在第2道次变形时的变形机制及变形组织的演变规律因采取的变形方式而不同,从而使得形成的组织形貌不同,B、C方式皆可形成等轴胞状组织.  相似文献   

12.
对TA2工业纯钛进行2道次等径弯曲通道变形(ECAP),对变形后试样进行不同温度及不同保温时间的退火,并分别测量了显微硬度,并分析了400 ℃退火1、2、4、8 h试样横截面的显微硬度分布。结果表明:经过ECAP变形后,材料硬度增加显著;退火后,随着退火温度的升高,硬度逐渐降低;保温时间越长,硬度缓慢降低;600 ℃退火8 h后试样的硬度为1592 MPa,与初始工业纯钛硬度基本相同。另外,随着保温时间的增加,试样横截面硬度分布趋于均匀。  相似文献   

13.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

14.
在Gleeble-1500热模拟机上对120°模具室温Bc方式ECAP变形8道次制备的平均晶粒尺寸约为200 nm的工业纯钛进行等温变速压缩实验,研究超细晶工业纯钛在变形温度为298~673 K和应变速率为1×10-4~1×100s-1条件下的流变应力行为。结果表明:变形温度和应变速率均对流变应力具有显著影响,峰值应力随变形温度的升高和应变速率的降低而降低;流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳,呈现稳态流变特征。采用双曲正弦模型确定了超细晶工业纯钛的变形激活能Q=104.46 kJ/mol和应力指数n=23,建立了相应的变形本构关系。  相似文献   

15.
12MnNb钢的ECAP变形及组织性能研究   总被引:1,自引:1,他引:0  
室温下对12MnNb钢进行ECAP变形,累积等效应变达到4.通过光学显微镜、电子拉伸机等试验仪器设备,分析研究ECAP变形试样的显微组织特征及其演变规律,以及力学性能的变化规律.结果表明,C方式ECAP变形时,1道次的组织细化和强化效果最为显著,随后道次主要增加晶粒的取向差.经ECAP变形后,强度随变形道次的增加而增加,4道次后的抗拉强度达到895 MPa,并保持了较好的塑性,伸长率达到12.4%.  相似文献   

16.
《塑性工程学报》2020,(1):90-95
在室温下经4道次等径弯曲通道变形(ECAP)及旋锻复合变形制备超细晶纯钛。利用透射电子显微镜、拉伸试验测试和显微硬度测试等方法对比研究了旋锻对ECAP变形纯钛的显微组织和力学性能的影响。结果表明:ECAP变形后形成宽度约为400 nm的板条组织,板条边界位错密度明显较高,硬度值急剧增加;旋锻使ECAP剪切变形形成的板条组织消失,晶粒显著细化、晶界逐渐清晰,获得平均晶粒尺寸约为200 nm的等轴状超细晶组织,旋锻变形后的组织更均匀,位错密度较低,硬度值略有下降;旋锻变形使ECAP变形纯钛屈服强度和抗拉强度明显增大,增幅分别为26. 3%和17%,塑性降低,伸长率约为12. 3%。  相似文献   

17.
ECAP制备超细晶钛的力学性能研究   总被引:1,自引:1,他引:0  
采用等径弯曲通道变形成功实现工业纯钛室温8道次变形.ECAP变形后,工业纯钛晶粒明显细化,力学性能显著提高,抗拉强度从407MPa提高到791MPa,并保持良好塑性,硬度最终达到2641 MPa,成为高性能超细晶纯钛.  相似文献   

18.
通过大塑性变形可以得到超细晶,从而获得有特殊性能的材料。对于工业纯钛以及一些难变形材料,等径弯曲通道变形(ECAP)是获得超细晶的一种最有潜力的方法,但由于ECAP模具的限制,获得的坯料形状和尺寸与所要求的半成品还有一定距离。因此,还需要对ECAP坯料进行一些额外变形,如轧制、挤压或锻造,以达到最终形状要求。  相似文献   

19.
应用三维有限元方法对楔形头部试样在等径弯曲通道挤压(ECAP)中的变形行为进行了模拟分析,以比较不同楔形方案(前楔形、后楔形以及楔形头部大小)对金属ECAP变形的影响.结果表明:试样头部为后楔形可以有效的降低加工载荷,显著改善应力/应变分布的均匀性,消除应变集中,避免折叠缺陷,从而获得组织性能较为均匀的试样.  相似文献   

20.
等径弯曲通道变形(简称ECAP)具有获得超细晶组织和改善力学性能的潜力。对7475铝合金在523K和573K下进行了ECAP变形,等效真应变达12左右,ECAP后平均晶粒尺寸约为0.29μm和0.5μm拉伸试验的结果表明:ECAP大大改善了合金的塑性,同时也提高了合金的屈服强度和拉伸强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号