首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
尾迹对涡轮叶栅边界层转捩的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
李虹杨  郑赟 《推进技术》2017,38(3):532-538
为研究周期性尾迹对下游涡轮叶栅边界层转捩的影响机理,并验证γ-Reθ转捩模型在非定常计算中的适用性,在自行开发的CFD程序上实现了该模型,对带有尾迹发生器的T106D-EIZ涡轮叶栅进行数值模拟;对比分析了实验数据与数值模拟的结果,并对流动机理进行阐述。主要结论如下:γ-Reθ转捩模型对周期性尾迹影响下的边界层转捩预测得较为准确,转捩位置随时间的变化规律及幅值均与实验值符合得很好;尾迹的时均作用是使吸力面转捩位置向尾缘移动,相比于无尾迹情况其移动距离约为5%轴向弦长;尾迹使吸力面阻力系数时均值较无尾迹情况增加约40%,同时减弱了分离泡的强度,但对分离泡的位置影响不大。  相似文献   

2.
《中国航空学报》2016,(3):639-652
Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance.Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately.In the present study,numerical study of corner separation in a linear highly loaded prescribed velocity distribution(PVD) compressor cascade has been investigated using seven frequently used turbulence models.The seven turbulence models include Spalart–Allmaras model,standard k–e model,realizable k–e model,standard k–x model,shear stress transport k–x model,v~2–f model and Reynolds stress model.The results of these turbulence models have been compared and analyzed in detail with available experimental data.It is found the standard k–e model,realizable k–e model,v~2–f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade.The Spalart–Allmaras model,standard k–x model and shear stress transport k–x model overestimate corner separation region at incidence of 0°.The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region.  相似文献   

3.
《中国航空学报》2016,(1):66-75
This paper describes a simplified transition model based on the recently developed correlation-based c ? Reht transition model. The transport equation of transition momentum thick-ness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house com-putational fluid dynamics (CFD) code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original c ? Reht model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.  相似文献   

4.
Improvement of Baldwin-Lomax turbulence model for supersonic complex flows   总被引:1,自引:0,他引:1  
Entropy represents the dissipation rate of energy. Through direct numerical simulation (DNS) of supersonic compression ramp flow, we find the value of entropy is monotonously decreasing along the wall-normal direction no matter in the attached or the separated region. Based on this feature, a new version of Baldwin-Lomax turbulence model (BL-entropy) is proposed in this paper. The supersonic compression ramp and cavity-ramp flows in which the original Baldwin-Lomax model fails to get convergent solutions are chosen to evaluate the performance of this model. Results from one-equation Spalart-Allmaras model (SA) and two-equation Wilcox k-x model are also included to compare with available experimental and DNS data. It is shown that BLentropy could conquer the essential deficiency of the original version by providing a more physically meaningful length scale in the complex flows. Moreover, this method is simple, computationally efficient and general, making it applicable to other models related with the supersonic boundary layer.  相似文献   

5.
Abstract The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 10~4to 10~6.In order to reveal the fundamental mechanism,the unsteady flow around a stationary two-dimensional elliptic airfoil with 16%relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt transition turbulence model at different angles of attack for flow Reynolds number of 5×10~5.The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data,which indicates that the numerical method works well.Through this study,the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results.It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case.Furthermore,a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.  相似文献   

6.
《中国航空学报》2016,(5):1205-1212
A streamwise-body-force-model (SBFM) is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The val-idation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure perfor-mance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tun-nel test results. Results show that to reach the goal of rapid integrated simulation combining inter-nal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.  相似文献   

7.
Transition prediction is a hot research topic of fluid mechanics. For subsonic and transonic aerodynamic flows, eN method based on Linear Stability Theory(LST) is usually adopted reliably to predict transition. In 2013, Coder and Maughmer established a transport equation for Tollmien-Schlichting(T-S) instability so that the eN method can be applied to general Reynolds-Average-Navier-Stokes(RANS) solvers conveniently. However, this equation focuses on T-S instability, and is...  相似文献   

8.
The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer.The stability equation of confluent flow was solved by using the global numerical method.The unstable modes associated with both the mixing and boundary layers were identified.They are the boundary layer mode,mixing layer mode 1 (nearly symmetrical mode) and mode 2 (nearly anti-symmetrical mode).The interactions between the mixing layer stability and the boundary layer stability were examined.As the mixing layer approaches the boundary layer,the neutral curves of the boundary layer mode move to the upper left,the resulting critical Reynolds number decreases,and the growth rate of the most unstable mode increases.The wall tends to stabilize the mixing layer modes at low frequency.In addition,the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.  相似文献   

9.
An experimental study on the boundary layer transition over a delta wing was carried out at Mach number 6 in a quiet wind tunnel. The Nano-tracer-based Planar Laser Scattering(NPLS) and Temperature-Sensitive Paints(TSP) techniques were used to measure the fine flow field structure and the wall Stanton number of the delta wing. The influence of factors such as the angle of attack and the Reynolds number was studied. The following results were obtained. The boundary layer transition between the le...  相似文献   

10.
孙爽  谭天荣  吴兴爽  孟林  杜慧麟  申奥文 《推进技术》2021,42(11):2474-2484
为研究正攻角状态下尾迹对低压涡轮附面层的渗透以及转捩过程的影响,分别在设计攻角和+10°攻角下,对高负荷低压涡轮叶型的吸力面附面层流动进行了数值模拟与实验。数值模拟使用CFX软件,采用大涡模拟模型。结果表明+10°攻角下,尾迹对附面层转捩过程的促进作用比设计攻角下更为显著,这是由于正攻角下的尾迹中心射流与吸力面切向的夹角更大,使得尾迹扰动渗透入附面层的深度更深,尾迹放大Klebanoff条纹强度更强,尾迹诱导转捩起始位置更靠上游。  相似文献   

11.
低雷诺数涡轮叶片边界层转捩及分离特性测量   总被引:2,自引:5,他引:2  
低雷诺数工作条件下涡轮流场特征及其控制设计,是航空发动机低压涡轮部件设计的难点和重点。针对低雷诺数涡轮叶栅流场开展了实验研究工作,利用油流显示、表面静压、边界层压力探针等测量手段研究了涡轮叶片边界层的分离和转捩。结果表明雷诺数降低导致了流动损失的增大,且存在一个临界雷诺数。当雷诺数小于临界雷诺数时,发生在吸力面的流动分离是开式的层流分离泡,不会再附与叶片;当雷诺数大于临界雷诺数时,分离流会在尾缘前重新附着于叶片吸力面,形成闭式分离泡。随着雷诺数的减小,出口尾迹变宽,出口流动损失、出口速度亏损和出口气流角偏离增大,尾迹中心向吸力面方向移动。  相似文献   

12.
为评估三向碳/碳材料的烧蚀性能,在北京空气动力研究所研制的FD—04F电弧加热器上对三向碳/碳材料进行了滑行试验,测出了三向碳/碳材料的转接压力。试验结果表明:滑行试验在测量转接压力方面是有效的,并给出了三向碳/碳模型的转授压力数据和最终外形形状。  相似文献   

13.
大型风力机三维空气动力学数值模拟   总被引:1,自引:0,他引:1  
采用数值模拟的方法,对三种风力机叶片的空气动力学性能进行研究.计算得到了旋转功率随着来流速度的变化曲线,并将所得结果与基于动量叶素理论的工程设计方法结果、风洞实验结果和风场实测结果进行对比.计算结果体现了CFD方法解决这种问题的有效性.所用的数值模拟方法可以广泛地应用到风力机设计和气动性能评价中,所得结果可作为叶片动态特性及气弹稳定性分析的载荷而被应用于风力机性能和可靠性的评估当中.  相似文献   

14.
《中国航空学报》2021,34(3):25-38
The attenuation of spatially evolving instability Tollmien-Schlichting (T-S) waves in the boundary layer of a flat plate with zero pressure gradients using an active feedback control scheme is theoretically and numerically investigated. The boundary layer is excited artificially by various perturbations to create a three-dimensional field of instability waves. Arrays of actuators and sensors are distributed locally at the wall surface and connected together via a feedback controller. The key elements of this feedback control are the determination of the dynamic model of the flat plate boundary layer between the actuators and the sensors, and the design of the model-based feedback controller. The dynamic model is established based on the linear stability calculation which simulates the three-dimensional input-output behaviour of the boundary layer. To simplify the control problem, an uncoupled control mode of the dynamic model is made to capture only those dynamics that have greatest influences on the input-output behaviour. A Proportional-Integral-Derivative (PID) controller, i.e. a lead-lag compensator, combining with a standard Smith predictor is designed based on the system stability criterion and the specifications using frequency-response methods. Good performance of the feedback control with the uncoupled control mode is demonstrated by the large reduction of the three-dimensional disturbances in the boundary layer. This simple feedback control is realistic and competitive in a practical implementation of T-S wave cancellation using a limited number of localised sensors and actuators.  相似文献   

15.
剪切层与边界层组合流动的线性不稳定性分析   总被引:1,自引:0,他引:1  
对不可压缩剪切层与边界层的组合流动完成了线性稳定性研究.组合流动的数学模型为Blasius边界层相似解与双曲正切函数的叠加,采用整体数值方法求解组合流动的稳定性方程,并验证了程序的准确性及网格无关性.研究给出组合流动的不稳定模态的辨识,即边界层模态和剪切层模态.在此基础上研究了剪切层对边界层模态不稳定性的影响以及壁面对剪切层模态的影响.由于剪切层的存在,使边界层模态中性曲线向左上方平移,临界雷诺数减小.此外,边界层模态不稳定性得到增强或抑制的影响,取决于扰动频率以及剪切层速度比的变化.组合流动中壁面边界层促使剪切层不稳定性减弱,主要表现在低频区域;而在高频区域,剪切层不稳定性几乎不受壁面边界层的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号