首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andreozzi R  Caprio V  Marotta R 《Water research》2003,37(15):3682-3688
The photooxidation of 2-aminophenol in aqueous solution in the presence of an iron(III) (hydr)oxide (goethite, alpha-FeOOH), used as a heterogeneous catalyst, has been investigated at different pH (3.0-8.0) and catalyst loads (100-500 mg/l) aiming mainly at elucidating the reaction kinetics. A large experimental campaign allowed to rule out the intervention of HO radicals in the photodegradation of 2-aminophenol. The classic Langmuir-Hinshelwood equation has been used for the kinetic analysis, best estimated values of the kinetic parameters being derived by means of an optimization procedure. The dependence of reaction kinetics on the temperature in the range of 285-308K has also been investigated.  相似文献   

2.
The typical antibiotic Oxytetracycline (OTC) remained in the environment and it was widely used. And the migration and transformation of OTC in natural environment and its harmfulness had become the focus of attention. Thus, the influence of Fe(II/III)‐OTC complex on degradation of OTC by Fe(II)/H2O2 under simulated solar light was investigated. The results showed that the average ratio of OTC‐Fe(II/III) complexes formed by OTC and Fe(III) was 1:1 at pH = 2.5. In addition, it was difficult to obtain the stability constant of Fe(III)‐OTC complexes effectively considering the morphology of Fe(III) and the complexation sites of OTC. And when OTC:Fe(II):H2O2 = 1:1.5:2, the removal rate of OTC was 82% after 1 h, however, simulated solar light could not improve the degradation of OTC effectively. Furthermore, the existence of OTC‐Fe(II/III) complex led to the slow degradation stage of OTC degradation by Fe(II)/H2O2. It could be concluded that the Fe(III)‐OTC complex might prolong the retention time of OTC in the environment.  相似文献   

3.
In recent years, the application of heterogeneous photocatalytic water purification processes has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible-light spectrum. By far, titania has played a much larger role in this scenario compared to other semiconductor photocatalysts due to its costly effectiveness, inert nature and photostability. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping.This paper aims to review and summarize the recent works on the titanium dioxide (TiO2) photocatalytic oxidation of phenol and discusses various mechanisms of phenol photodegradation (indicating the intermediates products) and formation of OH radicals. Phenol degradation pathway in both systems, TiO2/UV and doped-TiO2/Vis, are described.  相似文献   

4.
The arsenic removal capacity of a natural oxide sample consisting basically of Mn-minerals (birnessite, cryptomelane, todorokite), and Fe-oxides (goethite, hematite), collected in the Iron Quadrangle mineral province in Minas Gerais, Brazil, has been investigated. As-spiked tap water and an As-rich mining effluent with As-concentrations from 100 μg L−1 to 100 mg L−1 were used for the experiments. Sorbent fractions of different particle sizes (<38 μm to 0.5 mm), including spherical material (diameter 2 mm), have been used. Batch and column experiments (pH values of 3.0, 5.5, and 8.5 for batch, and about pH 7.0 for column) demonstrated the high adsorption capacity of the material, with the sorption of As(III) being higher than that of As(V). At pH 3.0, the maximum uptake for As(V) and for As(III)-treated materials were 8.5 and 14.7 mg g−1, respectively. The Mn-minerals promoted the oxidation of As(III) to As(V), for both sorbed and dissolved As-species. Column experiments with the cFeMn-c sample for an initial As-concentration of 100 μg L−1 demonstrated a very efficient elimination of As(III), since the drinking water limit of 10 μg L−1 was exceeded only after 7400 BV total throughput. The As-release from the loaded samples was below the limit established by the toxicity characteristic leaching procedure, thus making the spent material suitable for discharge in landfill deposits.  相似文献   

5.
Qiu R  Zhang D  Diao Z  Huang X  He C  Morel JL  Xiong Y 《Water research》2012,46(7):2299-2306
In this study, both Cr(VI) reduction and phenol oxidation induced by polymer-sensitized TiO2 were investigated under visible light. Study of the reaction mechanism indicated that poly(fluorene-co-thiophene) (PFT) acted as a semiconductor and was by itself able to reduce Cr(VI) under visible light irradiation. When coupled with TiO2, PFT served not only as the electron donor for Cr(VI) reduction, but also as a sensitizer. Upon irradiation by visible light, electrons in the sensitizing PFT polymer are excited and are transferred to the conduction band of TiO2. PFT-catalyzed reduction of Cr(VI) was significantly promoted by the presence of phenol, and synergism between Cr(VI) reduction and phenol degradation was demonstrated both by analysis of the FT-IR spectrum of PFT/TiO2 and by measuring the effect of repeated use of PFT/TiO2 on its photocatalytic efficiency. The results provide a cost-effective method to remove organic and inorganic pollutants simultaneously in the complex wastewater.  相似文献   

6.
A novel KMnO4–Fe(II) process was developed in this study for As(III) removal. The optimum As(III) removal was achieved at a permanganate dosage of 18.6 μM. At the optimum dosage of permanganate, the KMnO4–Fe(II) process was much more efficient than the KMnO4–Fe(III) process for As(III) removal by 15–38% at pH 5–9. The great difference in As(III) removal in these two processes was not ascribed to the uptake of arsenic by the MnO2 formed in situ but to the different properties of conventional Fe(III) and the Fe(III) formed in situ. It was found that the presence of Ca2+ had limited effects on As(III) removal under acidic conditions but resulted in a significant increase in As(III) removal under neutral and alkaline conditions in the KMnO4–Fe(II) process. Moreover, the effects of Ca2+ on As(III) removal in the KMnO4–Fe(II) process were greater at lower permanganate dosage when Fe(II) was not completely oxidized by permanganate. This study revealed that the improvement of As(III) removal at pH 7–9 in the KMnO4–Fe(II) process by Ca2+ was associated with three reasons: (1) the specific adsorption of Ca2+ increased the surface charge; (2) the formation of amorphous calcium carbonate and calcite precipitate that could co-precipitate arsenate; (3) the introduction of calcium resulted in more precipitated ferrous hydroxide or ferric hydroxide. On the other hand, the enhancement of arsenic removal by Ca2+ under acidic conditions was ascribed to the increase of Fe retained in the precipitate. FTIR tests demonstrated that As(III) was removed as arsenate by forming monodentate complex with Fe(III) formed in situ in the KMnO4–Fe(II) process when KMnO4 was applied at 18.6 μM. The strength of the “non-surface complexed” As–O bonds of the precipitated arsenate species was enhanced by the presence of Ca2+ and the complexation reactions of arsenate with Fe(III) formed in situ in the presence or absence of Ca2+ were proposed.  相似文献   

7.
Polyacrylonitrile (PAN) fiber was modified with hydroxylamine hydrochloride to introduce amidoxime groups onto the fiber surface. These amidoxime groups were used to react with Fe (III) ions to prepare Fe (III)-amidoximated PAN fiber complex, which was characterized using SEM, XRD, FTIR, XPS, DMA, and DRS respectively. Then the photocatalytic activity of Fe-AO-PAN was evaluated in the degradation of a typical azo dye, C. I. Reactive Red 195 in the presence of H2O2 under visible light irradiation. Moreover, the effect of the Fe content of Fe-AO-PAN on dye degradation was also investigated. The results indicated that Fe (III) ions can crosslink between the modified PAN fiber chains by the coordination of Fe (III) ions with the amino nitrogen atoms and hydroxyl oxygen atoms of the amidoximation groups to form Fe (III)-amidoximated PAN fiber complex, and the Fe content of which is mainly determined by Fe (III) ions and amidoximation groups. Fe (III)-amidoximated PAN fiber complex is found to be activated in the visible light region. Moreover, Fe (III)-amidoximated PAN fiber complex shows the catalytic activity for dye degradation by H2O2 at pH = 6.0 in the dark, and can be significantly enhanced by increasing light irradiation and Fe content, therefore, it can be used as a new heterogeneous Fenton photocatalyst for the effective decomposition of the dye in water. In addition, ESR spectra confirm that Fe (III)-amidoximated PAN fiber complex can generate more OH radicals from H2O2 under visible light irradiation, leading to dye degradation. A possible mechanism of photocatalysis is proposed.  相似文献   

8.
制备钇稳定氧化锆纳米粉体,XRD测定表明Y2O3掺来对ZrO3晶型未产生重大影响.作为冷气溶胶灭火剂的主要材料进行其对一元醇的阻爆和吸附实验,结果表明:ZrO2(Y2O3)纳米粉体对燃烧反应具有抑制作用,对一元醇具有阻爆和消爆作用,其作用的机理不是ZrO2(Y2O3)对一元醇的吸附,而是ZrO2(Y2O3)对燃烧链反应传递物的捕获.  相似文献   

9.
Ma M  Liu R  Liu H  Qu J 《Water research》2012,46(1):73-81
This study developed a novel KMnO4-Fe(II) process to remove the cells of Microcystis aeruginosa, and the mechanisms involved in have been investigated. At KMnO4 doses of 0-10.0 μM, the KMnO4-Fe(II) process showed 23.4-53.3% higher efficiency than the KMnO4-Fe(III) process did. This was first attributed to the moderate pre-oxidation of M. aeruginosa by KMnO4, achieved by dosing Fe(II) after a period of pre-oxidation, to cease the further release of intracellular organic matter (IOM) and the degradation of dissolved organic matter (DOM). The extensive exposure of M. aeruginosa to KMnO4 in KMnO4-Fe(III) process led to high levels and insufficient molecular weight of DOM, inhibiting the subsequent Fe(III) coagulation. Additionally, Fe(II) contributed to lower levels of the in-situ formed MnO2, the reduction product of KMnO4 which adversely affected algae removal by Fe(III) coagulation. However, the in-situ formed Fe(III), which was derived from the oxidation of Fe(II) by KMnO4, in-situ MnO2, and dissolved oxygen, dominated the remarkably high efficiency of KMnO4-Fe(II) process with respect to the removal of M. aeruginosa. On one hand, in-situ formed Fe(III) had more reactive surface area than pre-formed Fe(III). On the other hand, the continuous introduction of fresh Fe(III) coagulant showed higher efficiency than one-off dosage of coagulant to destabilize M. aeruginosa cells and to increase the flocs size. Moreover, the MnO2 precipitated on algae cell surfaces and contributed to the formation of in-situ formed Fe(III), which may act as bridges to enhance the removal of M. aeruginosa.  相似文献   

10.
This study was performed to gain an understanding of the structural and functional relationships between inter-taxa communities (macroinvertebrates as consumers, and microbes as decomposers or preys for the invertebrates) in a polluted stream using artificial neural networks techniques. Sediment samples, carrying microorganisms (eubacteria) and macroinvertebrates, were seasonally collected from similar habitats in streams with different levels of pollution. Microbial community taxa and densities were determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA sequence analysis techniques. The identity and density of macroinvertebrates were concurrently determined. In general, differences were observed on grouping by self-organizing map (SOM) in polluted, clean and recovering sites based on the microbial densities, while the community patterns were partly dependent on the sampling period. A Spearman rank order correlation analysis revealed correlations of several eubacterial species with those of macroinvertebrates: a negative correlation was observed between Acidovorax sp. (from polluted sites) and Gammaridae (mostly from the clean site), while Herbaspirillum sp. and Janthinobacterium sp. appeared to have positive correlations with some macroinvertebrate species. The population dynamics of the tolerant texa, Tubificidae and Chironomidae, appeared to be related with changes in the densities of Acidovorax sp. This study revealed community relationships between macroinvertebrates and microorganisms, reflecting the connectivity between the two communities via the food chain. A further physio-ecological and symbiological study on the invertebrate-microorganism relationships will be required to understand the degradation and utilization of detritus in aquatic ecosystems as well as to elucidate the roles of the inter-taxa in the recovery of polluted aquatic environments.  相似文献   

11.
Chlorinated hydrocarbons are widely used in chemical industries as solvents and intermediates for pesticides and dyes manufacture. Their presence was documented in rivers, groundwaters and seawaters.

In this work, the oxidation of 1,2-dichlorobenzene in aqueous solutions by means of Fe(III) homogeneous photocatalysis under UV lamp and sunlight irradiations is studied. The results show that the best working conditions are found for pH=3.0 and initial [Fe(III)] concentration equal to 1.0×10−4 mol L−1 although the investigated system can be utilized even at pH close to 4.0 but with slower abatement kinetics.

Some dicholoroderivatives, such as 2,3-dichlorophenol, 3,4-dichlorophenol and 2-chlorophenol, are identified as oxidation intermediates. The values of the kinetic constant for the photochemical reoxidation of Fe(II) to Fe(III) are evaluated by a mathematical model in the range 1.58–3.78 L mol−1 s−1 and 0.69–0.78 L mol−1 s−1 for the systems irradiated by UV lamp and sunlight, respectively.  相似文献   


12.
为了解污水构筑物中H2S排放浓度的时间变化特征与影响因子,选取恶臭污染较重的8月—10月,分别于2014年和2015年对苏州某污水处理厂曝气沉砂池内H2S浓度进行了实时在线监测(采样间隔为30 s)。结果表明,污水厂的H2S排放浓度波动较大,具有明显的变化特征,一天中11:00—14:00、17:00—19:00、22:00—02:00是H2S排放的3个高峰期,05:00—09:00、15:00—16:00是H2S排放的低谷期。进一步考察了污水流量、污水中硫化物浓度、pH值和水温的变化对H2S排放浓度的影响,发现H2S排放浓度与污水流量(1180~2360 m^3/h)、污水中硫化物浓度(0.36~0.71 mg/L)和水温(26.8~27.1℃)呈显著正相关性,其中污水中硫化物浓度和水温与H2S排放浓度的Pearson相关系数分别为0.84和0.62。在一天的变化范围内,pH值波动范围(7.07~7.23)小,与H2S排放浓度未表现出显著的相关性。  相似文献   

13.
Chlorophenols are used worldwide as broad-spectrum biocides and fungicides. They have half-life times in water from 0.6 to 550 h and in sediments up to 1700 h and, due to their numerous origins, they can be found in wastewaters, groundwaters or soils. Moreover, chlorophenols are not readily biodegradable.Recently, classic Advanced Oxidation Processes (AOP) have been proposed for their abatement in an aqueous solution. This paper investigates the oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol, at starting concentrations of 6.1 · 10−5 mol L−1, in aqueous solutions through Fe(III)/O2 homogeneous photocatalysis under UV light (303 ÷ 366 nm). The Fe(III)/O2 homogeneous photocatalysis is less expensive than using H2O2 due to the capability of Fe(III) to produce OH radicals, if irradiated with an UVA radiation, and of oxygen to re-oxidize ferrous ions to ferric ones when dissolved in solution. The results show that the best working conditions, for both compounds, are found for pH = 3.0 and initial Fe(III) concentration equal to 1.5·10−4 mol L−1 although the investigated oxidizing system can be used even at pH close to 4.0 but with slower abatement kinetics. Toxicity assessment on algae indicates that treated solutions of 2,4-dichlorophenol are less toxic on algae Pseudokirchneriella subcapitata if compared to not treated solutions whereas in the case of 3,4-dichlorophenol only the samples collected during the runs at 20 and 60 min are capable of inhibiting the growth of the adopted organism.The values of the kinetic constant for the photochemical re-oxidation of iron (II) to iron (III) and for HO attack to intermediates are evaluated by a mathematical model for pH range of 2.0-3.0 and initial Fe(III) concentrations range of 1.5 · 10−5-5.2 · 10−4 mol L−1.  相似文献   

14.
McCullagh C  Saunders GC 《Water research》2005,39(13):2799-2806
A polymer modified with succinic anhydride has been investigated for the adsorption of cadmium (II) on a freshly precipitated aluminium (III) hydroxide floc. The proportion of chelate attached to the polymer is varied to determine the relationship between carboxyl and amino groups on the polyelectrolyte, in terms of enhanced adsorption of cadmium (II) on a hydrous aluminium floc. The presence of polyelectrolyte enhanced the adsorption of 3.3 ppm Cd (II) on a 333 ppm Al (III) floc at every concentration of polyelectrolyte investigated. The proportion of succinic anhydride attached to the polymer had an impact on the increased adsorption of Cd (II) on an Al (III) floc observed. A decreasing proportion of succinic anhydride to polymer resulted in a decrease in the amount of cadmium adsorbed on the floc. Above pH 8, a decrease in the % Cd (II) adsorbed on the floc and % Al (III) retained within the floc decreases with the presence of polyelectrolyte as a result of the formation of soluble Cd-Polyethylenimine-succinic acid (PEISA) complexes. When the Al-PEISA combination was applied to a complex matrix where Cd (II), Cu (II) and Ni (II) ions competed for adsorption, enhanced adsorption was observed for Cd (II) and Ni (II). At pH 7, dissolution of the floc observed with the addition of discrete chelates was not observed with the addition of polyelectrolytes.  相似文献   

15.
Selective adsorption of alkylphenol polyethoxylates (APnEOs) from synthetic textile wastewater was investigated using hexagonal mesoporous silicates (HMSs). HMSs are synthetic silicate that have uniform mesopores, large surface areas and uniform surface functional groups. Five different types of HMSs were synthesized by surfactant-templating methods, and three of them were grafted with organic surface functional groups, i.e., n-octyldimethyl-, 3-aminopropyltriethoxy-, and 3-mercaptopropyl-groups. Titanium-substituted HMS was also made in the same way as HMS. Adsorption capacities and selectivities of these HMSs for APnEOs were investigated in batch adsorption experiments either in single-solute APnEO solutions or in mixed solutions with ionic dyes. Triton X-100 was used as a model APnEO and either Basic Yellow 1 or Acid Blue 45 was used as cationic or anionic dyes, respectively. All the HMSs except 3-aminopropyltriethoxy-grafted HMS had higher adsorption capacities of Triton X-100 than powdered activated carbon. HMS and Ti-HMS had the highest BET surface areas and mesopore volumes measured by the nitrogen adsorption method, and thereby the highest adsorption capacities for Triton X-100. Surface charge was the most important attractive force between HMSs and dyes. FT-IR spectra proved that hydrophilic HMSs adsorbed both Basic Yellow 1 and Acid Blue 45 by hydrogen bonding. Acid-base titration experiments revealed that all the HMSs except 3-aminopropyltriethoxy-grafted HMS were negatively charged at neutral pH, whereas PAC and 3-aminopropyltriethoxy-grafted HMS were positively charged. Due to negative surface charge, the anionic dye (Acid Blue 45) was not adsorbed on the four HMSs, which proves high selectivities of these HMSs for Triton X-100 over Acid Blue 45. On the contrary, a small amount of cationic dye (Basic Yellow 1) was adsorbed on all HMSs, but 3-aminopropyltriethoxy-grafted HMS showed the lowest adsorption capacity for Basic Yellow 1 due to positive surface charge. Unlike other silicate adsorbents, no surface solubilization was observed for all HMSs.  相似文献   

16.
Fullerene nanomaterials are finding an increasing number of applications in energy and environmental technologies. However, substantial production and use of fullerenes will likely lead to environmental exposure with unknown consequences. In this study, aqueous suspensions of three types of fullerenes nanoparticles, C60 fullerene, single-wall (SW) and multi-wall (MW) carbon nanotubes (CNT) were prepared by sonication and tested for reactive oxygen species (ROS) production and oxidation of benchmark organic compounds under ultraviolet (UV)-A irradiation. All three fullerenes formed colloidal aggregates in water. SWCNTs showed the highest ROS production and 2-chlorophenol degradation followed by MWCNT, and fullerene.  相似文献   

17.
The effect of effluent composition involving the common anionic species Cl, SO42− and CO32− on the efficiency of nickel(II) precipitation, modelling lime (CaO) as the precipitant, has been investigated using the solubility domain approach. Solubility domains were based on the phases that were found to limit metal solubility for systems representing potential effluent composition limits. These phases were found to resemble their mineralized counterparts, but with a lower degree of structural order. At higher SO42− and CO32− concentrations both gypsum (CaSO4·2H2O) and calcite (CaCO3) were formed, but these had little effect on the observed residual nickel solubility. The calculated solubility domains were found to generally encompass the experimentally determined solubilities, thereby providing quality assurance ranges for hydroxide precipitation. The effect of the complexing anions tartrate and EDTA4− on residual Ni(II) in solution as well as the effects of the addition of Fe(III) on the removal of Ni(II) complexed by these species are described.  相似文献   

18.
王建强  崔青松  张立娜 《山西建筑》2011,37(10):122-123
针对A2/O工艺运行过程中的不足和矛盾,以青岛出口加工区污水处理厂为例,研究了A+A2/O工艺的同步脱氮除磷效果,并通过现场运营得到了验证;测试结果表明该工艺可达到良好的处理效果,在工程设计和建设中有很好的应用前景。  相似文献   

19.
This paper presents the results of a finite element (FE) numerical analysis that was developed to simulate the fully-instrumented Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) at the Maree Michel Bridge in Louisiana. Four different loading conditions were considered in this paper to evaluate the performance of GRS-IBS abutment due to dead loading, tandem axle truck loading, service loading, and abnormal loading. The two-dimensional FE computer program PLAXIS 2D 2016 was selected to model the GRS-IBS abutment. The hardening soil model proposed by Schanz et al., (1999) that was initially introduced by Duncan and Chang (1970) was used to simulate the granular backfill materials; a linear-elastic model with Mohr-Coulomb frictional criterion was used to simulate the interface between the geosynthetic and backfill material. Both the geosynthetic and the facing block were modeled using linear elastic model. The Mohr-Coulomb constitutive model was used to simulate the foundation soil. The FE numerical results were compared with the field measurements of monitoring program, in which a good agreement was obtained between the FE numerical results and the field measurements. The range of maximum reinforcement strain was between 0.4% and 1.5%, depending on the location of the reinforcement layer and the loading condition. The maximum lateral deformation at the face was between 2 and 9 mm (0.08%–0.4% lateral strain), depending on the loading condition. The maximum settlement of the GRS-IBS under service loading was 10 mm (0.3% vertical strain), which is about two times the field measurements (~5 mm). This is most probably due to the behavior of over consolidated soil caused by the old bridge. The axial reinforcement force predicted by FHWA (Adams et al., 2011b) design methods were 1.5–2.5 times higher than those predicted by the FE analysis and the field measurements, depending on the loading condition and reinforcement location. However, the interface shear strength between the reinforcement and the backfill materials predicted by Mohr-Coulomb method was very close to those predicted by the FE.  相似文献   

20.
Fan C  He J 《Water research》2011,45(10):3098-3106
A variety of antibiotics and their metabolites at sub-inhibitory level concentrations are suspected to expand resistance genes in the environment. However, knowledge is limited on the causal correlation of trace antibiotics or their metabolites with resistance proliferation. In this study, erythromycin (ERY) resistance genes were screened on microbial consortia of sequencing batch reactors (SBRs) after one year acclimation to ERY (100 μg/L) or dehydrated erythromycin (ERY-H2O, 50 μg/L). The identified esterase gene ereA explains that ERY could be degraded to six products by microbes acclimated to ERY (100 μg/L). However, ERY could not be degraded by microbes acclimated to ERY-H2O (50 μg/L), which may be due to the less proliferated ereA gene. Biodegradation of ERY required the presence of exogenous carbon source (e.g., glucose) and nutrients (e.g., nitrogen, phosphorus) for assimilation, but overdosed ammonium-N (>40 mg/L) inhibited degradation of ERY. Zoogloea, a kind of biofilm formation bacteria, became predominant in the ERY degradation consortia, suggesting that the input of ERY could induce biofilm resistance to antibiotics. Our study highlights that lower μg/L level of ERY or ERY-H2O in the environment encourages expansion of resistance genes in microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号