共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnet grains from an intensely metasomatized mid‐crustal shear zone in the Reynolds Range, central Australia, exhibit a diverse assortment of textural and compositional characteristics that provide important insights into the geochemical effects of fluid–rock interaction. Electron microprobe X‐ray maps and major element profiles, in situ secondary ion mass spectrometry oxygen isotope analyses, and U–Pb and Sm–Nd geochronology are used to reconstruct their thermal, temporal and fluid evolution. These techniques reveal a detailed sequence of garnet growth, re‐equilibration and dissolution during intracontinental reworking associated with the Ordovician–Carboniferous (450–300 Ma) Alice Springs Orogeny. A euhedral garnet porphyroblast displays bell‐shaped major element profiles diagnostic of prograde growth zoning during shear zone burial. Coexisting granulitic garnet porphyroclasts inherited from precursor wall rocks show extensive cation re‐equilibration assisted by fracturing and fragmentation. Oxygen isotope variations in the former are inversely correlated with the molar proportion of grossular, suggesting that isotopic fractionation is linked to Ca substitution. The latter generally show close correspondence to the isotopic composition of their precursor, indicating slow intergranular diffusion of O relative to Fe2+, Mg and Mn. Peak metamorphism associated with shearing (~550 °C; 5.0–6.5 kbar) occurred at c. 360 Ma, followed by rapid exhumation and cooling. Progressive Mn enrichment in rim domains indicates that the retrograde evolution caused partial garnet dissolution. Accompanying intra‐mineral porosity production then stimulated limited oxygen isotope exchange between relict granulitic garnet grains and adjacent metasomatic biotite, resulting in increased garnet δ18O values over length scales <200 μm. Spatially restricted oxygen interdiffusion was thus facilitated by increased fluid access to reaction interfaces. The concentration of Ca in channelled fracture networks suggests that its mobility was enhanced by a similar mechanism. In contrast, the intergranular diffusion of Fe2+, Mg and Mn was rock‐wide under the same P–T regime, as demonstrated by a lack of local spatial variations in the re‐equilibration of these components. The extraction of detailed reaction histories from garnet must therefore take into account the variable length‐ and time‐scales of elemental and isotopic exchange, particularly where the involvement of a fluid phase enhances the possibility of measureable resetting profiles being generated for slowly diffusing components such as Ca and O, even at low ambient temperatures and relatively fast cooling rates. 相似文献
2.
Alice Vho Daniela Rubatto Benita Putlitz Anne‐Sophie Bouvier 《Geostandards and Geoanalytical Research》2020,44(3):459-471
Accurate ion microprobe analysis of oxygen isotope ratios in garnet requires appropriate reference materials to correct for instrumental mass fractionation that partly depends on the garnet chemistry (matrix effect). The matrix effect correlated with grossular, spessartine and andradite components was characterised for the Cameca IMS 1280HR at the SwissSIMS laboratory based on sixteen reference garnet samples. The correlations fit a second‐degree polynomial with maximum bias of ca. 4‰, 2‰ and 8‰, respectively. While the grossular composition range 0–25% is adequately covered by available reference materials, there is a paucity of them for intermediate compositions. We characterise three new garnet reference materials GRS2, GRS‐JH2 and CAP02 with a grossular content of 88.3 ± 1.2% (2s), 83.3 ± 0.8% and 32.5 ± 3.0%, respectively. Their micro scale homogeneity in oxygen isotope composition was evaluated by multiple SIMS sessions. The reference δ18O value was determined by CO2 laser fluorination (δ18OLF). GRS2 has δ18OLF = 8.01 ± 0.10‰ (2s) and repeatability within each SIMS session of 0.30–0.60‰ (2s), GRS‐JH2 has δ18OLF = 18.70 ± 0.08‰ and repeatability of 0.24–0.42‰ and CAP02 has δ18OLF = 4.64 ± 0.16‰ and repeatability of 0.40–0.46‰. 相似文献
3.
Quartz–garnet oxygen isotope thermometry of quartz‐rich metasedimentary rocks from the southern Adirondack Highlands (Grenville Province, New York) yields metamorphic temperatures of 700–800 °C, consistent with granulite facies mineral assemblages. Samples from the Irving Pond quartzite record Δ18O(Qtz–Grt) = 2.68 ± 0.21‰ (1 s.d. , n = 15), corresponding to peak metamorphic conditions of 734 ± 38 °C. This agrees well with the estimates from garnet–biotite exchange thermometry. Similar temperature estimates are obtained from Swede Pond (682 ± 47 °C, n = 3) and King's Station (c. 700 °C). The Whitehall area records higher temperatures (798 ± 25 °C, n = 3). All of these temperatures are higher than previous regional temperature estimates. The c. 800 °C temperatures near Whitehall are consistent with preservation of pre‐granulite contact temperatures adjacent to anorthosite. The preservation of peak metamorphic temperatures in garnet of all sizes is consistent with slow oxygen diffusion in garnet, and closure temperatures of at least 730 °C. Peak metamorphic fractionations are preserved in rocks with varying quartz:feldspar ratios, indicating that the modal percentage of feldspar does not affect retrograde oxygen exchange in these rocks. The lack of this correlation suggests slow rates of oxygen diffusion in quartz and feldspar, consistent with the results of anhydrous oxygen diffusion experiments. 相似文献
4.
《International Geology Review》2012,54(5):596-621
The Triassic Dehnow pluton of NE Iran is a garnet-bearing I-type calc-alkaline metaluminous diorite-tonalite-granodiorite intrusion. The parental magma formed as the result of partial melting of intermediate to felsic rocks in the lower crust. Petrological and geochemical evidence, which indicates a magmatic origin for the garnet, includes: large size (~10–20 mm) of crystals, absence of reaction rims, a distinct composition from garnet in adjacent metapelitic rocks, and similarity in the composition of mineral inclusions (biotite, hornblende) in the garnet and in the matrix. Absence of garnet-bearing enclaves in the pluton and lack of sillimanite (fibrolite) and cordierite inclusions in magmatic garnet suggests that the garnet was not produced by assimilation of meta-sedimentary country rocks. Also, the δ18O values of garnet in the pluton (8.3–8.7‰) are significantly lower than δ18O values of garnet in the metapelitic rocks (12.5–13.1‰). Amphibole-plagioclase and garnet-biotite thermometers indicate crystallization temperatures of 708°C and 790°C, respectively. A temperature of 692°C obtained by quartz-garnet oxygen isotope thermometry points to a closure temperature for oxygen diffusion in garnet. The composition of epidote (Xep) and garnet (Xadr) indicates ~800°C for the crystallization temperature of these minerals. Elevated andradite content in the rims of garnet suggests that oxygen fugacity increased during crystallization. 相似文献
5.
A combined oxygen‐isotope and fluid‐inclusion study has been carried out on high‐ and ultrahigh‐pressure metamorphic (HP/UHPM) eclogites and garnet clinopyroxenite from the Dabie‐Sulu terranes in eastern China. Coesite‐bearing eclogites/garnet clinopyroxenite and quartz eclogites have a wide range in whole‐rock δ18OVSMOW, from 0 to 11‰. The high‐T oxygen‐isotope fractionations preserved between quartz and garnet preclude significant retrograde isotope exchange during exhumation, and the wide range in whole‐rock oxygen‐isotope composition is thought to be a presubduction signature of the precursors. Aqueous fluids with variable salinities and gas species (N2‐, CO2‐, or CH4‐rich), are trapped as primary inclusions in garnet, omphacite and epidote, and in quartz blebs enclosed within eclogitic minerals. In high‐δ18O HP/UHPM rocks from Hujialin and Shima, high‐salinity brine and/or N2 inclusions occur in garnet porphyroblasts, which also contain inclusions of coesite, Cl‐rich blue amphibole and dolomite. In contrast, in low‐δ18O eclogites from Qinglongshan and Huangzhen, the Cl concentrations in amphibole are very low, < 0.2 wt.%, and low‐salinity aqueous inclusions occur in quartz inclusions in epidote porphyroblasts and in epidote cores. These low‐salinity fluid inclusions are believed to be remnants of meteoric water, although the fluid composition was modified during pre‐ and syn‐peak HP/UHPM. Eclogites at Houshuichegou and Hetang contain CH4‐rich fluid inclusions, coexisting with high‐salinity brine inclusions. Methane was probably formed under the influence of CO2‐rich aqueous fluids during serpentinisation of mantle‐derived peridotites prior to or during plate subduction. Remnants of premetamorphic low‐ to high‐salinity aqueous fluid with minor N2 and/or other gas species preserved in the Dabie‐Sulu HP/UHPM eclogites and garnet clinopyroxenite indicate a great diversity of initial fluid composition in the precursors, implying very limited fluid–rock interaction during syn‐ and post‐peak HP/UHPM. 相似文献
6.
对南秧田层状矽卡岩型白钨矿石中石榴石及电气石石英脉型白钨矿石中石英流体包裹体岩相学特征研究表明,与成矿有关的包裹体主要有富液相、富气相和含子晶的流体包裹体3种类型。矽卡岩型矿石中石榴石及共生石英的包裹体均一温度为128~250℃,盐度w(NaCl)=0.7%~8.1%;电气石石英脉型白钨矿石中石英的流体包裹体均一温度范围为181~325℃,盐度w(NaCl)=1.57%~15.76%。两种类型矿石成矿溶液密度为0.75~0.95g/cm3,表明形成这两种类型矿石的成矿流体均属于中温、中-低盐度、低密度的流体。氢氧同位素结果显示其主要来源于地层水(变质水),后期受到了岩浆水的叠加改造作用。硫同位素落入沉积岩、变质岩及蒸发硫酸盐的硫同位素组成范围内。 相似文献
7.
Maria Rosa Scicchitano Michael J. Spicuzza Eric T. Ellison David Tuschel Alexis S. Templeton John W. Valley 《Geostandards and Geoanalytical Research》2021,45(1):161-187
The ability to constrain the petrogenesis of multiple serpentine generations recorded at the microscale is crucial for estimating the extent and conditions of modern versus fossil serpentinisation in ophiolites. To address matrix bias effects during oxygen isotope analysis by SIMS, we present the first investigation analysing antigorite in the compositional range Mg# = 77.5–99.5 mole %, using a CAMECA IMS‐1280 secondary ion mass spectrometer. Spot‐to‐spot homogeneity is ≤ 0.5‰ (2s) for the new antigorite reference materials. The relative bias between antigorite reference materials with different Mg/Fe ratios is described by a second‐order polynomial, and a maximum difference in bias of ~ 1.8‰ was measured for Mg# ~ 78 to 100. We observed a bias up to ~ 1.0‰ between lizardite and antigorite attributed to their different crystal structures. Orientation effects up to ~ 1‰ were observed in chrysotile. The new analytical protocol allowed the identification of oxygen isotope zoning up to ~ 7‰ in serpentine minerals from two serpentinites recovered from an area of active serpentinisation in the Samail ophiolite. Thus, in situ analysis is capable of resolving isotopic heterogeneity that may directly reflect changes in the physical and chemical conditions of multiple serpentinisation events in the Samail ophiolite. 相似文献
8.
Zoneibe Luz;Marc Leu;Lukas Baumgartner;Anne-Sophie Bouvier;Hugo Bucher;Torsten Vennemann; 《Geostandards and Geoanalytical Research》2024,48(1):145-177
To help understand bioapatite microstructures and related chemical variations, their impact on O-isotope compositions measured and give insights on sample preparation, this study analysed conodonts and shark teeth prepared in different orientations through microanalytical and bulk sampling techniques: scanning electron microscopy (SEM); electron probe microanalysis (EPMA); continuous-flow and high-temperature reduction – isotope ratio mass spectrometry; and secondary ion mass spectrometry (SIMS). The SEM and EPMA measurements in conodonts allowed to distinguish the tissues commonly analysed by SIMS, which included albid and hyaline crowns but given their often small-scale intergrowth, mixtures of these are difficult to avoid. In situ SIMS O-isotope analyses provided different δ18O values: lower values with higher variance (16 ± 1‰ n = 13, 15.7 ± 1.9‰ n = 11) for mixed albid-hyaline tissues, and higher, homogeneous values (17.1 ± 0.2‰, n = 13) for mainly hyaline tissues. Recent shark teeth δ18OSIMS value for dentine of the same tooth was 10‰ lower than the mean δ18OSIMS value for enameloid whereas the δ18OPO4 values measured for enameloid and dentine using the HTR method were identical. The variation of δ18O seems sensitive to analytical artefacts related to sample textures, caused during the sample preparation over more porous biomineral surfaces. 相似文献
9.
Michael Wiedenbeck Robert B. Trumbull Martin Rosner Adrian Boyce John H. Fournelle Ian A. Franchi Ralf Halama Chris Harris Jack H. Lacey Horst Marschall Anette Meixner Andreas Pack Philip A.E. Pogge von Strandmann Michael J. Spicuzza John W. Valley Franziska D.H. Wilke 《Geostandards and Geoanalytical Research》2021,45(1):97-119
Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be < 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future. 相似文献
10.
Guo‐Qiang Tang Ben‐Xun Su Qiu‐Li Li Xiao‐Ping Xia Jie‐Jun Jing Lian‐Jun Feng Laure Martin Qing Yang Xian‐Hua Li 《Geostandards and Geoanalytical Research》2019,43(4):585-593
Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis. 相似文献
11.
New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich garnet, titanite, and quartz are combined with experimental values for quartz-grossular. The resulting A-coefficients (‰K2) are:
Zrc Alm Grs Ttn Qtz 2.64 2.71 3.03 3.66 Zrc 0.07 0.39 1.02 Alm 0.32 0.95 Grs 0.63 - Full-size table
12.
High-grade metamorphic rocks were used to explore oxygen isotope fractionations between pyroxene and garnet, and to investigate the effects on fractionation factors of the cation substitutions Fe3+Al?1 and Ca(Fe,Mg)?1. Recrystallized, granulite facies (725 °C) wollastonite ores from the northern Adirondack highlands contain essentially only the minerals clinopyroxene (a Di–Hd solid solution)+garnet (a Grs–Adr solid solution)±wollastonite, and exhibit a systematic dependence of measured fractionations on the Fe3+ content of calcic garnet: Δ(Cpx–CaGrt)=(0.14±0.12)+(0.78±0.20)XAdr and Δ(Wo–CaGrt)=(0.15±0.22)+(0.57±0.33)XAdr. In eclogites formed at T ≤650 °C, measured compositions of Ca-poor garnet and omphacite combined with experimental data indicate that Ca-poor, Fe-rich garnet is enriched in 18O compared to both diopside and grossular: extrapolating to 1000 K, Δ(Alm–Di)≈c. 0.2 and Δ(Alm–Grs)≈c. 0.5. Orthopyroxene and clinopyroxene from Gore Mountain, New York, show a constant fractionation that is independent of rock type, as expected if they have the same closure temperature. These data imply Δ(Opx-Cpx)≈c. 0.7 at 1000 K. Measured fractionations among Ca-poor garnet, orthopyroxene, clinopyroxene and hornblende in the Gore Mountain rocks further indicate an 18O enrichment in Ca-poor garnet over Grs (≈c. 0.5 at 1000 K). The new measurements are indistinguishable from expected equilibrium values based on experiments for the minerals enstatite, diopside, grossular, wollastonite and feldspar, but consistently indicate a significant isotope effect for the simple octahedral cation substitutions Fe3+Al?1 (Grs vs. Adr) and Ca(Fe,Mg)?1 (Ca-poor garnet vs. Grs; Opx vs. Cpx). Neither cation substitution has been directly investigated for its effect on 18O/16O fractionation with experiments in silicates. Chemical characterization of minerals is required prior to petrological interpretation of oxygen isotope trends. 相似文献
13.
胶南榴辉岩矿物氧同位素平衡及其Sm-Nd年代学制约 总被引:2,自引:4,他引:2
对苏鲁地体中的胶南榴辉岩进行了矿物氧同位素分析,并与同一手标本矿物的Sm-Nd内部等时线定年和Nd-Sr同位素分布进行了对比。研究表明,石榴子石与绿辉石之间的氧同位素平衡与否能够对矿物Sm-Nd同位素体系的平衡状况和内部等时线定年结果的有效性给予直接制约。合理的石榴子石+绿辉石Sm-Nd内部等时线年龄产于两矿物之间达到并在峰变质条件下保持氧同位素平衡的样品中,而两矿物之间处于氧同位素不平衡的样品不能给出正确的Sm-Nd内部等时线年龄。同一矿物在手标本尺度出现显著的O-Nd-Sr同位素不均一性,据此对这些元素在石榴子石和绿辉石中的扩散速率顺序进行了估计,不仅得到了与实验扩散系数相吻合的结果,而且由此估计出在峰变质条件下达到矿物内部同位素均一化所需要的时间应大于10Ma。 相似文献
14.
G. R. T. JENKIN C. M. FARROW A. E. FALLICK D. HIGGINS 《Journal of Metamorphic Geology》1994,12(3):221-235
Retrograde exchange of oxygen isotopes between minerals in igneous and metamorphic rocks by means of diffusion is explored using a finite difference computer model, which predicts both the zonation profile of δ18 O within grains, and the bulk δ18 O value of each mineral in the rock. Apparent oxygen isotope equilibrium temperatures that would be observed in these rocks are calculated from the δ18 O values of each mineral pair within the rock. In systems which cool linearly from a sufficiently high temperature or at a low enough cooling rate, such that the final oxygen isotope values are not dependent upon the initial oxygen isotope values ('slow cooling'), the apparent oxygen isotope temperature derived for a rock composed of a single mineral pair can be shown to be simply related to the Dodson closure temperatures ( T c ) for the two phases and the mode of the rock. Adding a third phase into a system which undergoes 'slow' cooling will cause the apparent temperature derived for the two minerals already present to differ from the simple relationship for a two-phase system. In some systems oxygen isotope reversals can be developed. If cooling is not 'slow', then the mineral δ18 O values resulting from cooling will be partly dependent upon the initial temperature of the system concerned. The model successfully simulates the mineral δ18 O values that are often observed in granitic rocks. Application of the model will help in assessing the validity of oxygen isotope thermometry in different geological settings, and allows quantitative prediction of the oxygen isotope fractionations that are developed in cooling closed systems. 相似文献
15.
R. J. Quinn K. Kitajima D. Nakashima M. J. Spicuzza J. W. Valley 《Journal of Metamorphic Geology》2017,35(2):231-252
Oxygen isotope ratios of quartz inclusions (QI) within garnet from granulite and amphibolite facies gneisses in the Adirondack Mountains, NY were analysed and used to determine metamorphic temperatures. Primary QI for eight of 12 samples have δ18O values significantly lower than matrix quartz (MQ). The primary QI retain δ18O values representative of thermal conditions during garnet crystallization, whereas the δ18O values of MQ were raised by diffusive exchange with other matrix minerals (e.g. mica and feldspar) during cooling. The δ18O differences between QI and MQ show that garnet (a mineral with slow diffusion of oxygen) can armour QI from isotopic exchange with surrounding matrix, even during slow cooling. These differences between δ18O in MQ and QI can further be used to test cooling rates by Fast Grain Boundary diffusion modelling. Criteria for identifying QI that preserve primary compositions and are suitable for thermometry were developed based on comparative tests. Relations between δ18O and inclusion size, distance of inclusion to host–garnet rim, core–rim zonation of individual inclusions, and presence or absence of petrological features (healed cracks in QI, inclusions in contact with garnet cracks lined by secondary minerals, and secondary minerals along the inclusion grain boundary) were investigated. In this study, 61% of QI preserve primary δ18O and 39% were associated with features that were linked to reset δ18O values. If δ18O in garnet is homogeneous and inclusions are removed, laser‐fluorination δ18O values of bulk garnet are more precise, more accurate, and best for thermometry. Intragrain δ18O(Grt) profiles measured in situ by ion microprobe show no δ18O zonation. Almandine–rich garnet (Alm60–75) from each sample was measured by laser‐fluorination mass‐spectrometry (LF‐MS) for δ18O and compared with ion microprobe measurements of δ18O in QI for thermometry. The Δ18O(Qz–Grt) values for Adirondack samples range from 2.66 to 3.24‰, corresponding to temperatures of 640–740 °C (A[Qz–Alm] = 2.71). Out of 12 samples that were used for thermometry, nine are consistent with previous estimates of peak temperature (625–800 °C) based on petrological and carbon–isotope thermometry for regional granulite and upper amphibolite facies metamorphism. The three samples that disagree with independent thermometry for peak metamorphism are from the anorthosite–mangerite–charnockite–granite suite in the central Adirondacks and yield temperatures of 640–665 °C, ~100 °C lower than previous estimates. These low temperatures could be interpreted as thermal conditions during late (post‐peak) crystallization of garnet on the retrograde path. 相似文献
16.
One-dimensional advection-dispersion models predict that characteristic δ18 O vs. distance and δ18 O vs. δ13 C profiles should be produced during isothermal metamorphic fluid flow under equilibrium conditions. However, the patterns of isotopic resetting in rocks that have experienced fluid flow are often different from the predictions. Two-dimensional advection-dispersion simulations in systems with simple geometries suggest that such differences may be as a result of fluid channelling and need not indicate disequilibrium, high dispersivities, or polythermal flow. The patterns of isotopic resetting are a function of: (1) the permeability contrast between more permeable layers ('channels') and less permeable layers ('matrix'); (2) the width and spacing of the channels; (3) the width and spacing of discrete fractures; and (4) the orientation of the pressure gradient with respect to layering. In fractured systems, the efficiency of isotopic transport depends on the fracture aperture and the permeability of the surrounding rock. Resetting initially occurs along and immediately adjacent to the fractures, but with time isotopic resetting because of flow through the rock as a whole increases in importance. Application of the one-dimensional advection-dispersion equations to metamorphic fluid flow systems may yield incorrect estimates of fluid fluxes, intrinsic permeabilities, dispersivities, and permeability contrasts unless fluid flow occurred through zones of high permeability that were separated by relatively impermeable layers. 相似文献
17.
甘肃敦煌小独山西石英脉型钨矿床位于北山成矿带柳园-俞井子裂谷带西段,经过详查和勘探工作,发现其资源量已达大型钨矿床规模。文章在野外详细观测和系统采样的基础上,对不同成矿阶段的样品使用岩相学、激光拉曼光谱、显微测温和碳、氢-氧同位素测试等方法,对矿脉中流体包裹体进行了综合研究。结果显示,该矿床矿脉中主要发育有气-液两相(Ⅰ型)和含液相CO2三相(Ⅱ型)2类包裹体。其中,Ⅰ阶段流体呈中高温、中盐度特征,主成矿(Ⅱ)阶段呈中高温、中低盐度特征,Ⅲ阶段呈低温,低盐度特征,均一温度与盐度呈现出正相关关系。包裹体的δD和δ18O值范围分别为-98.3‰~-76.4‰和0.8‰~5.4‰,呈岩浆水与大气降水相混合的特征;方解石中流体的δ13C值为-0.26‰~-0.73‰,δ18O值为-1.26‰~-3.73‰,显示C可能来源于海相碳酸盐岩,在后期演化过程中与大气降水发生了氧同位素交换作用。成矿早期与主成矿期均受到了大气降水的影响,该矿床发生了明显的流体混合作用是该地区成矿的主要因素。 相似文献
18.
《Sedimentology》2018,65(2):360-399
Sedimentary gaps are a major obstacle in the reconstruction of a carbonate platform's history. In order to improve the understanding of the early diagenesis and the succession of events occurring during the formation of discontinuity surfaces in limestones, secondary ion mass spectrometry was used for the first time to measure the δ 18O and δ 13C signatures of 11 early cement and fabric stages in several discontinuity surfaces from the Jurassic carbonate platform of the Paris Basin, France. Pendant cements show a high variability in δ 18O, which was impossible to detect by the less precise microdrilling method. The morphology of a given cement can be produced in various environments, and dogtooth cements especially can precipitate in marine phreatic and meteoric phreatic to vadose environments. Marine dogtooth cements and micritic microbially induced fabrics precipitated directly as low‐magnesium calcite in marine waters, as attested to by the preservation of their initial δ 18O and δ 13C signals. Five discontinuity types are recognized based on high‐resolution geochemical analyses, and their palaeoenvironmental history can be reconstructed. Two exposure surfaces with non‐ferroan pendant or meniscus cements formed in the oxidizing vadose zone. A hardground displays marine fibrous cements and non‐ferroan dogtooth cements that formed in a subtidal environment in oxidizing water. Two composite surfaces have undergone both marine and subaerial lithification. Composite surface 1 displays non‐luminescent ferroan dogtooth cements that precipitated in reduced conditions in seawater, followed by brown‐luminescent dogtooth cements characteristic of a meteoric phreatic environment. Composite surface 2 exhibits microbially induced fabrics that formed in marine water with abundant organic matter. The latter discontinuity, initially formed in a subtidal environment, was subsequently exposed to meteoric conditions, as evidenced by ferroan geopetal cements. A high‐resolution ion microprobe study is essential to precisely document the successive diagenetic environments that have affected carbonate rocks and discontinuities with a polygenic and intricate history. 相似文献
19.
Abstract Granulite facies marbles from the Upper Calcsilicate Unit of the Reynolds Range, central Australia, contain metre-scale wollastonite-bearing layers formed by infiltration of water-rich (XCO2= 0.1–0.3) fluids close to the peak of regional metamorphism at c. 700° C. Within the wollastonite marbles, zones that contain <10% wollastonite alternate on a millimetre scale with zones containing up to 66% wollastonite. Adjacent wollastonite-free marbles contain up to 11% quartz that is uniformly distributed. This suggests that, although some wollastonite formed by the reaction calcite + quartz = wollastonite + CO2, the wollastonite-rich zones also underwent silica metasomatism. Time-integrated fluid fluxes required to cause silica metasomatism are one to two orders of magnitude higher than those required to hydrate the rocks, implying that time-integrated fluid fluxes varied markedly on a millimetre scale. Interlayered millimetre -to centimetre-thick marls within the wollastonite marbles contain calcite + quartz without wollastonite. These marls were probably not infiltrated by significant volumes of water-rich fluids, providing further evidence of local fluid channelling. Zones dominated by grandite garnet at the margins of the marl layers and marbles in the wollastonite-bearing rocks probably formed by Fe metasomatism, and may record even higher fluid fluxes. The fluid flow also reset stable isotope ratios. The wollastonite marbles have average calcite (Cc) δ18O values of 15.4 ± 1.6% that are lower than the average δ18O(Cc) value of wollastonite-free marbles (c. 17.2 ± 1.2%). δ13C(Cc) values for the wollastonite marbles vary from 0.4% to as low as -5.3%, and correlations between δ18O(Cc) and δ13C(Cc) values probably result from the combination of fluid infiltration and devolatilization. Fluids were probably derived from aluminous pegmatites, and the pattern of mineralogical and stable isotope resetting implies that fluid flow was largely parallel to strike. 相似文献
20.
对大别造山带双河超高压榴辉岩和片麻岩Sm-Nd和Rb-Sr等时线矿物进行了O同位素地质测温。尽管Sm-Nd等时线给出一致的三叠纪年龄(213~238 Ma),同一样品Rb-Sr等时线却给出侏罗纪年龄(171~174 Ma)。片麻岩、榴辉岩和榴闪岩矿物对O同位素测温得到600~720℃和420~550℃两组温度,分别对应于约225±5 Ma榴辉岩相变质和约175±5 Ma角闪岩相退变质条件下停止同位素扩散交换的温度。同一样品三叠纪Sm-Nd等时线年龄的保存、侏罗纪Rb-Sr等时线年龄的出现以及有规律的O同位素温度,表明在角闪岩相退变质过程中,Sr和O在含水矿物(如黑云母和角闪石)中的扩散速率在手标本尺度上比石榴石Nd和多硅白云母Sr的扩散速率快。 相似文献