首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Two welded Ti-6A1- 4V pressure vessels leaked prematurely in service. The leaks were caused by cracks emanating from weld porosity. The cracks originated during fabrication, with subsequent growth in serv-ice leading to the formation of the leak paths. Pore cracking is thought to be caused by a mechanism that involves both sustained- load and cyclic contributions, with the former being the more prominent. It is shown that the tendency for cracking is influenced by pore position and that pore size is not a deciding factor in that regard. The factors that govern pore cracking are discussed, and the possible role of inter-stitial embrittlement is assessed.  相似文献   

2.
钛及钛合金因其优异的综合性能和独特功能被广泛应用于航空航天和海洋工程等重要领域,而不同类型的钛及钛合金的性能各不相同。介绍钛及钛合金的分类及其焊接特性,分别描述工业纯钛、α型钛合金、α+β型钛合金、近β和β型钛合金的分类方法、添加元素及基本特性,综述不同类型的钛及钛合金的国内外焊接研究现状,重点关注各种钛及钛合金的焊接方法、焊后组织和性能,归纳总结各种钛及钛合金的主要焊接方法为TIG焊、激光焊和电子束焊。  相似文献   

3.
An extensive experimental study on a nickel-based superalloy, Rene 80 using autogenous laser welding has been undertaken to determine the effect of the process parameters and weld bead geometry on cracking in the as-welded and post-weld heat treated conditions. Little cracking was observed in the as-welded condition with low powers and beam diameters around 2.5 mm. Welding speed had little effect on the incidence of cracking in the as-welded condition. Investigation of the aspect ratio (penetration divided by width) indicated that little cracking occurred in the as-welded condition when the aspect ratio was approximately 0.5. The same effect was observed with the post-weld heat treated samples. An analysis of the microstructures indicated that the cracking was caused primarily by liquation in the as-welded condition and was exacerbated by post-weld heat treatment cracking during the subsequent heat treatment. Finally the study resolved some of the contradictory findings in the literature on the effect of process parameters on the incidence of cracking in the as-welded and post-weld heat treated conditions.  相似文献   

4.
This article presents the fatigue crack growth (FCG) behaviors of a new burn-resistant highly-stabilized beta Ti40 alloy. The FCG rates were analyzed. The fracture surfaces and the side surfaces of the test samples were explored. The results show that frequency affects the cracking behaviors of Ti40 alloy. Temperature also plays an important role in Ti40 alloy cracking. At room temperature (25°C), when the frequency increases, the cracking rate changes a little in the range of low stress intensity factor (ΔK), while it changes significantly when ΔK is high. At 500°C, the cracking rate of Ti40 alloy changes significantly during all the course of cracking. The frequency also affects the microstructure patterns of Ti40 alloy. A number of secondary cracks appear in the area more than 200 μm from the main crack at a high ΔK when the frequency is 1 Hz, but only a few secondary cracks exist when the frequency is 10 Hz. Facet image is the main image of the fracture surfaces when the frequency is 1 Hz. While, ductile striation occupies most of the area of fracture surfaces when the frequency is 10 Hz.  相似文献   

5.
ABSTRACT

The circular-patch welding test was used to study the liquation and liquation cracking of AZ-series Mg alloys. A heat treatment was carried out on the as-received AZ91 alloy to dissolve the γ(Mg17Al12) particles before welding. The circular-patch welding test was then conducted on the heat-treated, as-received AZ91 alloy using AZ61 and AZ91 filler wires. The results showed that the susceptibility of AZ91 alloy to liquation and liquation cracking was significantly reduced by the dissolution of massive γ(Mg17Al12) particles via a heat treatment before welding as the liquation mechanism was changed. Both constitutional liquation and incipient melting occurred in the partially melted zone of the as-received AZ91 welds, while only incipient melting occurred in the heat-treated AZ91 welds.  相似文献   

6.
7.
This is a synthetical report about hydrogen behavior in titanium aluminide alloys in our group. There are two kinds of hydrogen solubility in titanium aluminides, one is the overall solubility at high temperature in the matrix without hydride and the other is the terminal solubility at low temperature in the matrix in equilibrium with the hydride. The former decreases but the later increases with increasing temperature. Hydrogen as a temporary β stabilizer clearly decreases the size of the α2 phase, and increases greatly the amount of β phase, and then increases evidently the mechanical properties of Ti3Al+Nb. The cathodic corrosion of TiAl during charging is due to hydride on the surface. The decrease of the strength, the strain to fracture and fracture toughness for hydrogenated samples is due to hydride. The enrichment of atomic hydrogen at the crack tip during charging under sustained load can enhance localized plastic deformation and cause hydrogen-induced delayed cracking.  相似文献   

8.
9.
Fatigue behavior has been studied on gas-nitrided smooth specimens of commercial pure titanium, an alpha/beta Ti-6Al-4V alloy, and a beta Ti-15Mo-5Zr-3Al alloy under rotating bending, and the obtained results were compared with the fatigue behavior of annealed or untreated specimens. It was found that the role of the nitrided layer on fatigue behavior depended on the strength of the materials. Fatigue strength was increased by nitriding in pure titanium, while it was decreased in the Ti-6Al-4V and Ti-15Mo-5Zr-3Al alloys. Based on detailed observations of fatigue crack initiation, growth, and fracture surfaces, the improvement and the reduction in fatigue strength by nitriding in pure titanium and both alloys were primarily attributed to enhanced crack initiation resistance and to premature crack initiation of the nitrided layer, respectively.  相似文献   

10.
A study on the porosity of CO2 laser welding of titanium alloy   总被引:1,自引:0,他引:1  
0IntroductionTitanium alloys are increasingly applied in aeronauticindustry because of its higher strength to weight ratio thansteel and superior fatigue performance to aluminum alloy.At the same time there are many newtitanium-based alloysoccurring,such as Ti3Al-Nb titanium aluminide[1].Weldsof titanium alloy are prone to porosity,presenting a poten-tial problem for many application requiring sealing,corro-sion and fatigue resistance and good fracture toughness.Many studies have demonstrate…  相似文献   

11.
Abstract

The mechanical properties and strengthening mechanisms in laser beam welds of pure titanium were investigated. Although grain coarsening is evidently observed in the heat affected zone (HAZ) and fusion zone (FZ) compared with the base metal (BM), the tensile and hardness tests indicate that the HAZ and FZ are stronger than the BM under the welding conditions employed in the present work. The strengthening mechanism in the HAZ is ascribed to the substructure strengthening and that in the FZ is attributed to the combination of the substructure strengthening and the solute solution strengthening.  相似文献   

12.
The occurrence of solidification cracks in laser welds of type 310 stainless steels was predicted by numerical analyses of the solidification brittle range (ductility curve for cracking) and thermal strain in the weld metal. The solidification brittle range in laser welding was estimated from that in arc welding based on the numerical analyses of supercooling (for calculating dendrite tip temperature) and segregation (for calculating completely solidified temperature) during rapid solidification. The calculated solidification brittle range was reduced with an increase in the welding speed because of the enhanced supercooling and the inhibited solidification segregation. The thermal strain analysis by FEM suggested that solidification cracks would occur in SUS310S welds at laser travelling velocity of 60 mm/s applying the initial strain of 1.5%, while no solidification cracks in SUS310EHP welds at any laser travelling velocities applying the higher initial strain of 2.2%. The cantilever type cracking test in laser welding revealed that the predicted results of occurrence of solidification cracks were consistent with experimental ones.  相似文献   

13.
钛合金具有密度低、比强度高,耐蚀性好,加工性能优异等优点,主要应用于航空航天、交通运输和石油化工等领域。当钛合金作为结构材料应用在不同领域时,传统的熔融焊接方法会产生较大残余应力,组织粗化,变形大,裂纹和孔隙等缺陷;而采用搅拌摩擦焊接技术可以避免传统熔融焊接方法产生的缺陷,从而大幅度提高钛合金焊接接头质量。目前,钛合金的搅拌摩擦焊接技术已成为国内外研究热点。主要介绍搅拌摩擦焊接的原理、工艺特点,国内外关于钛合金FSW焊接接头的宏观形貌、微观组织(晶粒大小、织构)和力学性能等方面的最新研究进展,最后展望了钛合金FSW未来的研究方向。  相似文献   

14.
Results of investigations of the processes of development of deformation of titanium interlayers with a plate-shaped microstructure, situated between the components of an alloy with a globular (equiaxed, fine-grain) structure, in diffusion welding conditions, are presented. It is shown that the reduction in relative thickness of a component with plate-shaped microstructure is accompanied by an increase in the creep rate of the microstructure, referred to as softening. Equations were derived for evaluating the coefficients of softening of the components with plate-shaped structures in dependence on their relative thickness and applied pressure.  相似文献   

15.
16.
The eddy current transducer (ECT) of the transformer type is used to construct a sensor for investigating titanium sheets joined by a welded joint. The characteristics of the ECT are presented. The measurement method for controlling the occurrence of defects in the welded joints in titanium alloys is described. The experimental results obtained by the ECT on two welded titanium sheets are presented. The depth of penetration of the field of eddy currents into the investigated object is determined and the dependences describing the response of the ECT at different depths of the defect are outlined. The relationships can be used for evaluating the quality of welded joints and determining the reliability of welding.  相似文献   

17.
Comparison has been made of the crack path through a conventional solution heat-treated and aged microstructure in two titanium alloys with that of a double-heat-treated microstructure containing α platelets. Crack-opening displacement calculations from theory developed in the literature were used to predict the crack path based on deflection past the platelets, or cutting through the α platelets, based on the minimization of energy needed for the crack to propagate through the microstructure.  相似文献   

18.
研究AZ31镁合金摩擦搅拌焊组织的演化,包括织构和断口变化。利用中子衍射仪测量织构。利用光学显微镜和扫描电子显微镜观察应力腐蚀开裂(SCC)样品的金相及断口形貌。利用X射线衍射仪研究SCC样品的断口表面结构。结果表明,在母材表面形成了明显的基面织构。然而,搅拌区晶粒发生了基面旋转,大多数晶粒的基面沿着焊接方向倾斜25°。在慢拉伸应力作用下,在空气和侵蚀性溶液中分别形成了羽毛状孪晶和氢化物。在溶液中,穿晶裂纹扩展,最终断裂在回转侧。在断口表面存在的氢化物表明镁合金应力腐蚀可能存在氢致延迟开裂机制。  相似文献   

19.
腐蚀疲劳裂纹扩展的机理   总被引:4,自引:0,他引:4  
针对高强度低合金钢、钛合金和镁合金进行了腐蚀疲劳裂纹的扩展FCG、外加电压对于腐蚀疲劳裂纹扩展速率的影响以及断裂表面的研究。在外加电压对于腐蚀疲劳裂纹扩展速率影响的研究过程中,在一段时间内发生极化,可以根据此期间内的开路电压记录裂纹扩展速率,并测量极化情况下的裂纹增长速率。由于裂纹扩展测量技术的进步,测量的时间很少超过300s,这使观测非独立模式阴极极化对于腐蚀疲劳裂纹扩展速率的影响成为可能。当最大应力强度(Kmax)超过给定材料--溶液组合的特定临界特征值时,阴极极化会加速裂纹的扩展。当Kmax低于临界值,而所有其他条件(试件、溶液、pH值、载荷频率、应力比率、温度等)不变时,同样的阴极极化会妨碍裂纹扩展,或者对于裂纹扩展无影响。断口显微分析结果显示,阴极极化下加速裂纹的扩展是由于氢致腐蚀(HIC)。因此,根据氢致腐蚀机理以及KHIC和△ KHIC的显示,Kmax的临界值,以及应力范围(△ K)是由相应的腐蚀疲劳裂纹扩展的症状所确定的。当Kmax > KHIC(△ K > △ KHIC)时,腐蚀疲劳裂纹扩展的主要机理是HIC。对于大多数的材料--溶液组合的研究表明,当Kmax < KHIC(△ K < KHIC)时,应力协助扩散在腐蚀疲劳裂纹扩展中起决定性作用。  相似文献   

20.
Effect of the welding conditions and annealing on the impact strength of different heat-affected areas of the titanium welded joints is studied. Maximum impact strength is established in the range of 350–550°C, in practice this coincides with the temperature peaks for short-time strength and fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号