首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Hydrogen peroxide (HOOH) is a potentially valuable hydroxyl radical (OH) scavenger in secondary organic aerosol experiments focused on ozonolysis yields. Here, we present results for α-pinene ozonolysis. The OH scavenging produces solely HO2 radicals and the resulting high [HO2]/[RO2] ratio causes an increase in aerosol formation from α-pinene ozonolysis, compared to experiments performed with butanol OH scavengers. The majority of the increase comes in the 100 μg m?3 volatility range, suggesting that instead of more volatile products formed under higher RO2 conditions, less volatile, multifunctional hydroperoxides form under the high-HO2 conditions here. This dependence on the [HO2]/[RO2] ratio can be parameterized in a similar fashion to the way high- and low-NO x yields are currently treated in models.  相似文献   

2.
β-Carotene oxidation in the presence of both lipophilic α-tocopherol and hydrophilic ascorbic acid was experimentally studied in a biphasic oil–water system. Ascorbic acid in the water phase had two opposite effects of promoting and suppressing α-tocopherol consumption in the oil phase and indirectly participated in the antioxidation and prooxidation of β-carotene in the oil phase. The drastic antioxidation of β-carotene by stopping the consumption of α-tocopherol was caused by the depletion of oxygen in the system due to the oxidation of ascorbic acid. A kinetic model was constructed by incorporating the oxidation of ascorbic acid itself in the water phase, the regeneration and consumption of α-tocopherol by ascorbic acid at the oil–water interface, and the oxygen mass transfer across the gas–oil interface and the oil–water interface. The model well described the antioxidation and prooxidation behavior of β-carotene in the presence of α-tocopherol and ascorbic acid and the oxygen concentration profiles in each phase. The model was able to effectively determine the appropriate amounts of lipophilic and hydrophilic antioxidants to prevent β-carotene oxidation under various conditions.  相似文献   

3.
Uchida T  Abe C  Nomura S  Ichikawa T  Ikeda S 《Lipids》2012,47(2):129-139
The aim of this study was to evaluate tissue distribution of vitamin E isoforms such as α- and γ-tocotrienol and γ-tocopherol and interference with their tissue accumulation by α-tocopherol. Rats were fed a diet containing a tocotrienol mixture or γ-tocopherol with or without α-tocopherol, or were administered by gavage an emulsion containing tocotrienol mixture or γ-tocopherol with or without α-tocopherol. There were high levels of α-tocotrienol in the adipose tissue and adrenal gland, γ-tocotrienol in the adipose tissue, and γ-tocopherol in the adrenal gland of rats fed tocotrienol mixture or γ-tocopherol for 7 weeks. Dietary α-tocopherol decreased the α-tocotrienol and γ-tocopherol but not γ-tocotrienol concentrations in tissues. In the oral administration study, both tocopherol and tocotrienol quickly accumulated in the adrenal gland; however, their accumulation in adipose tissue was slow. In contrast to the dietary intake, α-tocopherol, which has the highest affinity for α-tocopherol transfer protein (αTTP), inhibited uptake of γ-tocotrienol to tissues including adipose tissue after oral administration, suggesting that the affinities of tocopherol and tocotrienol for αTTP in the liver were the critical determinants of their uptake to peripheral tissues. Vitamin E deficiency for 4 weeks depleted tocopherol and tocotrienol stores in the liver but not in adipose tissue. These results indicate that dietary vitamin E slowly accumulates in adipose tissue but the levels are kept without degradation. The property of adipose tissue as vitamin E store causes adipose tissue-specific accumulation of dietary tocotrienol.  相似文献   

4.
5.
This article reports a systematic kinetic study on the oxidative polymerization of ??-substituted styrene monomers such as styrene (St), ??-methylstyrene (AMS), 4-chloro ??-methylstyrene (CAMS), and ??-phenylstyrene (APS) in the presence of 2,2??-azobisisobutyronitrile as a free radical initiator at 100?psi oxygen pressure and 40-50?°C in toluene. The rate of oxidative polymerization follows the order: APS?>?CAMS?>?AMS?>?St. Theoretical calculations have been performed using density functional theory to support the order of oxidative polymerization rates. In addition, the synthesis and characterization of poly(4-chloro ??-methylstyrene peroxide) (PCAMSP) is reported here for the first time. Elemental analysis and nuclear magnetic resonance spectroscopy confirm the alternating copolymer structure of PCAMSP with ?CO?CO?C bonds in the main chain. Thermal degradation studies using differential scanning calorimeter and thermogravimetric analysis reveal that PCAMSP degrades highly exothermically and the average enthalpy of degradation at various heating rates is found to be 48.7?±?0.6?kcal/mol, which is of the same order reported for other vinyl polyperoxides.  相似文献   

6.
Using advanced electron paramagnetic resonance techniques (EPR), oxidation of crude vegetable oils and their components (fatty acids and triglycerides) by radicals generated from hydrogen peroxide was investigated. The correlation rotational times were determined allowing us to characterize radicals formed during edible oils oxidation. Additionally 1H- and 14N-hyperfine coupling constants differentiate the fatty acids dependently on their unsaturation. The acids with a higher number of unsaturated bonds exhibit higher AN values of PBN/·lipid adduct. The waste oil with high free fatty acids content underwent the oxidation reaction more efficiently, however due to saturation and the high content of the fatty acids the carbon-centered radicals formed (upon hydrogen peroxide radicals) and their PBN (N-tert-butyl-α-phenylnitrone) adducts were less stable. The antioxidant effect was dependent on the amount of α-tocopherol added. In small amounts of up to 0.35 mg/1 g of fatty acid or triglyceride, it inhibited the creation of PBN/·lipid adducts while with higher amounts it intensified adduct formation. The α-tocopherol (AT) addition influence was also studied as spin scavenging dependence and indicated that any addition of the antioxidant in the investigated samples led to free radical scavenging and the effect increased with the increase in AT content.  相似文献   

7.
8.
The physico-chemical and catalytic properties of CuO–ZnO–Al2O3, synthesised by sol–gel process (SG), impregnation method (IMP) and a combination of both preparative procedures (ISG), were comparatively studied. Samples were characterised with thermogravimetric-differential thermal analysis (TG–DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques and oxygen chemisorption. XPS study was not consistent with the bulk findings and revealed the presence of Cu2+, Cu+ and/or Cu0 species at the catalysts surface. Surface analysis revealed also that copper enrichment occurred mainly at the surface of SG and IMP solids. The reducibility of the mixed oxides catalysts was always modified with respect to that of pure copper oxides phases and the reduction of CuO was markedly affected by the presence of ZnO–Al2O3. Temperature programmed reduction (H2-TPR) analysis showed that the temperature corresponding to maximum reduction rate of copper oxide was ca. 256 °C for IMP sample and ca. 296 °C for both SG and ISG solids. These latter showing a high resistance to reduction suggest a strong interaction of copper species with ZnO–Al2O3, limiting thus copper particles sintering. CuO particle size was found to be ca. 20 nm for both SG and ISG solids and ca. 40 nm for IMP catalysts. Besides, at 300 °C SG and ISG samples showed superior amount of reversible O2 uptake with respect to IMP solids. Catalytic activity of CuO–ZnO–Al2O3 was measured with bio-ethanol steam reforming reaction. SG catalysts exhibited both high selectivity to hydrogen and high stability with time on stream than IMP and ISG catalysts. This was attributed both to the particles size of copper species, their amount on the catalytic surface and to their strong interaction with ZnO–Al2O3.  相似文献   

9.
《分离科学与技术》2012,47(18):2942-2950
Atenolol is a β-blocker that can be found in urban wastewaters and which is not removed efficiently by conventional wastewater treatments. In the present study, electro-Fenton (EF) process was used to assess the degradation and mineralization of pharmaceutical atenolol in aqueous solutions. Electrolyses of 250 mL of atenolol solution (0.17 mM), at initial pH 3, were carried out in an undivided electrolytic cell in galvanostatic mode. Influence of material cathode (graphite, stainless steel, and platinized titanium), applied current (100–500 mA), sulfate dosage (0.01–0.5 M), and catalyst ferrous ions concentration (1–10 mM), on the oxidation efficiency was studied. Atenolol mineralization was monitored by COD dosage. Kinetic analysis indicated that atenolol mineralization followed a pseudo-first order model and the rate constant increased with rising current, ferrous ions concentration (up to 5 mM) and electrolyte concentration. Results showed that graphite cathode, 0.5 M Na2SO4 electrolyte, 0.3 A and 5 mM FeSO4 catalyst were the best conditions for atenolol mineralization. In these optimal conditions, after 240 min more than 87% of the initial COD was removed. The corresponding current efficiency (CE) and specific energy consumption (SEC) were 22.33% and 0.194 kWh/kg COD, respectively. This latter corresponds to 0.078 kWh/m3 of treated wastewater.  相似文献   

10.
Catalytic decomposition of methane is a potential alternative route for the production of hydrogen and nanocarbonaceous materials from natural gas and other hydrocarbon feedstocks. In the present paper, we report the results of characterization and catalytic behaviour during the methane decomposition reaction of a spinel-like Ni–Mg–Al catalyst prepared by coprecipitation. The influence of reaction temperature and feed composition on carbon content, carbon formation rate and carbon morphology has also been studied. The main consequence of MgO addition to the support is the increase in the activity and stability of the Ni–Al catalysts. The better performance of Ni–Mg–Al catalysts is due to the higher interaction generated between Ni particles and the support in this catalyst, which prevents the formation of large metallic particles. The carbonaceous products are carbon nanofibres (diameters ~10–35 nm) and amorphous carbon, which causes the catalyst deactivation by encapsulation. The amount of each type of carbonaceous material depends on the different operating conditions used. The reduction–reaction–regeneration cycles lead to a remarkable sintering of the Ni crystallites due to weakening of the metal-support interaction.  相似文献   

11.
12.
l-Amino acid deaminase (LAAD) is a key enzyme in the deamination of l-valine (l-val) to produce α-ketoisovalerate (KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production. In the present study, a combination strategy of modification of flexible loop regions around the product binding site and the avoidance of dramatic change of main-chain dynamics was reported to reduce the product inhibition. The four mutant PM-LAADM4 (PM-LAADS98A/T105A/S106A/L341A) achieved a 6.2-fold higher catalytic efficiency and an almost 6.7-fold reduction in product inhibition than the wild-type enzyme. Docking experiments suggested that weakened interactions between the product and enzyme, and the flexibility of the “lid” structure relieved LAAD product inhibition. Finally, the whole-cell biocatalyst PM-LAADM4 has been applied to KIV production, the titer and conversion rate of KIV from l-val were 98.5 g·L−1 and 99.2% at a 3-L scale, respectively. These results demonstrate that the newly engineered catalyst can significantly reduce the product inhibition, that making KIV a prospective product by bioconversion method, and also provide the understanding of the mechanism of the relieved product inhibition of PM-LAAD.  相似文献   

13.
Sintering additivesto gelcasting Sialon‘SiC were decided by the optimizing experiments , The resuhs show that Sialon-SiC can be sintered under 1450℃ and sintering temperature dcreases by 100℃,when 2%~3% TiO2 or Guangxi clay is used as sintering additive.  相似文献   

14.
Pajunen TI  Johansson MP  Hase T  Hopia A 《Lipids》2008,43(7):599-610
Autoxidation of conjugated linoleic acid (CLA) methyl ester follows at least partly Farmer's hydroperoxide theory. A mechanism for this hydroperoxide pathway has been proposed based on autoxidation of 9-cis,11-trans-CLA methyl ester. This investigation aims at confirming and further clarifying the mechanism by analyzing the hydroperoxides produced from 10-trans,12-cis-CLA methyl ester and by theoretical calculations. Five methyl hydroxyoctadecadienoates were isolated by HPLC and characterized by UV, GC-MS, and 1D- and 2D-NMR techniques. In addition, an HPLC method for the separation of the intact hydroperoxides was developed. The autoxidation of 10-trans,12-cis-CLA methyl ester in the presence of high amount of alpha-tocopherol (20%) was diastereoselective in favor of one geometric isomer, namely Me 9-OOH-10t,12c, and produced new positional isomers 10- and 14-hydroperoxides (Me 10-OOH-11t,13t; Me 14-OOH-10t,12c; and Me 14-OOH-10t,12t). Importantly, one of these new isomers, which was characterized as an intact hydroperoxide, had an unusual cis,trans geometry where the cis double bond is adjacent to the hydroperoxyl-bearing methine carbon. Further insight to the mechanism was provided by calculating the relative energies for different conformations of the precursor lipid, the allylic carbon-hydrogen bond dissociation enthalpies, and the spin distributions on the intermediate pentadienyl radicals. As a result, a better understanding of the isomeric distribution of the product hydroperoxides was achieved and a modified mechanism that accounts for these calculations is presented.  相似文献   

15.
Comparative data on the molecular weight distribution of polymers obtained by polymerization of ethylene, propylene and 1-hexene, and copolymerization of ethylene with α-olefins over the titanium-magnesium catalysts (TMC) in the absence and presence of hydrogen are presented. In contrast to the ethylene polymerization, in the cases of propylene and 1-hexene polymerization and copolymerization of ethylene with α-olefins, the hydrogen addition is characterized by noticeable narrowing of the molecular weight distribution (MWD) due to lower contribution of the MWD component with high molecular weight. This result is an evidence of the increased reactivity of TMC active sites producing high molecular weight poly-α-olefins and copolymers of ethylene with α-olefins in the chain transfer reaction with hydrogen. It is suggested that the increased reactivity of these sites in the transfer reaction with hydrogen appears after the 2,1-addition of α-olefin to the growing polymer chain.  相似文献   

16.
The influence of temperature (40, 60 and 80 °C) and addition of α-tocopherol (0, 500 mg/kg) on the formation and distribution of the main oxidation products of linoleic acid, i.e. hydroperoxy-, keto- and hydroxy-dienes, were studied in samples of fatty acid methyl esters (FAME) derived from high-linoleic (HL) and high-oleic (HO) sunflower oils. In the range of temperatures studied, the formation of hydroperoxydienes showed monomolecular and bimolecular rate constants that ranged from 0.01 to 1 mmol1/2kg−1/2h−1 and from 0.02 to 0.9 h−1, respectively. The overall activation energies involved were similar for both samples and for the monomolecular and bimolecular periods (63–68 kJ/mol). The relative oxidation of methyl linoleate, which depended on the fatty acid composition of the FAME sample, was unaffected by temperature. At the three temperatures assayed, hydroperoxydienes constituted approximately 90 and 50% of total hydroperoxides in the HL and HO samples, respectively. Formation of keto- and hydroxy-dienes was influenced by temperature in a similar way to hydroperoxydienes and, consequently, changes in the distribution of compounds were not observed. The addition of α-tocopherol not only decreased the overall oxidation rate, but also affected the distribution of compounds. The content of hydroperoxydienes relative to that of total hydroperoxides was not affected by the presence of the antioxidant in the HL sample, whereas a significant increase (75%) was found in the HO sample compared with the control (50%). The addition of α-tocopherol in both samples also resulted in a slight increase of keto- and hydroxy-dienes in relation to hydroperoxydienes.  相似文献   

17.
The dimeric structure of the N-terminal 12 residues drives the interaction of α-synuclein protein with membranes. Moreover, experimental studies indicated that the aggregation of α-synuclein is faster at low pH than neutral pH. Nevertheless, the effects of different pH on the structural characteristics of the α-syn12 dimer remain poorly understood. We performed 500 ns temperature replica exchange molecular dynamics (T-REMD) simulations of two α-syn12 peptides in explicit solvent. The free energy surfaces contain ten highly populated regions at physiological pH, while there are only three highly populated regions contained at acidic pH. The anti-parallel β-sheet conformations were found as the lowest free energy state. Additionally, these states are nearly flat with a very small barrier which indicates that these states can easily transit between themselves. The dimer undergoes a disorder to order transition from physiological pH to acidic pH and the α-syn12 dimer at acidic pH involves a faster dimerization process. Further, the Lys6–Asp2 contact may prevent the dimerization.  相似文献   

18.
The genus of Termitomyces purchased from the market has been identified as Termitomyces eurrhizus using the Internal Transcribed Spacer (ITS) method. An α-galactosidase from T. eurrhizus (TEG), a monomeric protein with a molecular mass of 72 kDa, was purified 146 fold by employing ion exchange chromatography and gel filtration. The optimum pH and temperature was 5.0 and 60 °C, respectively. TEG was stable over pH 2–6, and also exhibited good thermostablility, retaining 100% of the original activity after incubation at 60 °C for 2 h. Inhibition of the enzyme activity by N-bromosuccinimide (NBS) constituted evidence for an essential role of tryptophan in the catalytic action of the isolated enzyme. Besides 4-nitro-phenyl α-d-galactophyranoside (pNPGal), natural substrates could also be effectively hydrolyzed by TEG. Results of thin-layer chromatography (TLC) revealed complete enzymatic hydrolysis of raffinose and stachyose to galactose at 50 °C within 6 h. These properties of TEG advocate its utilization for elevating the nutritional value of soymilk.  相似文献   

19.
A series of α-methylstyrene, styrene, and acrylonitrile (α-MSAN) copolymers with different acrylonitrile (AN) contents were synthesized by altering α-MSt, St, and AN ratios with emulsion copolymerization method. By melt-blending these copolymers with PVC resin and di-isooctyl phthalate (DOP), PVC/α-MSAN, and PVC/α-MSAN/DOP blends were prepared. The miscibility and morphology of the blends were investigated by dynamic mechanical analysis (DMA) and scanning electron microscopy. The PVC is immiscible with SAN by melt-mixing, whereas PVC is miscible with α-MSAN (α-MSt/St = 1/1) if AN weight percent is within the window range of 20–25 wt %, and α-MSAN (not containing St) with 35 wt % AN is miscible with PVC even when they are blended by melt-mixing. Replacement of styrene with α-methylstyrene widens the miscibility window with PVC. The miscibility of PVC/α-MSAN blends is substantially improved with the increasing α-MSt content in α-MSAN copolymer containing identical AN content. When DOP was introduced into the PVC/α-MSAN (α-MSt/St = 1/1) blends, a single tan δ peak over room temperature in DMA detection is found as AN content in α-MSAN copolymer is within the range of 15–25 wt %, and SEM observation also shows that the blends are homogeneous. When the AN content in α-MSAN copolymer is over 35 wt %, the presence of DOP causes the phase domain extended. The phase domain size of the PVC/α-MSAN/DOP blends intensively depends on AN content in α-MSAN copolymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Theoretical Foundations of Chemical Engineering - The selective properties of individual and binary agents are compared according to data obtained by gas–liquid chromatography (GLC). The...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号