首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This work examines the generalization of a certain interior-point method, namely the method of analytic centers, to semi-infinite linear programming problems. We define an analytic center for these problems and an appropriate norm to examine Newton's method for computing this center. A simple algorithm of order zero is constructed and a convergence proof for that algorithm is given. Finally, we describe a more practical implementation of a predictor-corrector method and give some numerical results. In particular we concentrate on practical integration rules that take care of the specific structure of the integrals.  相似文献   

2.
We present in this paper a numerical method for solving non-strictly-convex quadratic semi-infinite programming including linear semi-infinite programming. The proposed method transforms the problem into a series of strictly convex quadratic semi-infinite programming problems. Several convergence results and a numerical experiment are given.  相似文献   

3.
We present in this paper a numerical method for solving non-strictly-convex quadratic semi-infinite programming including linear semi-infinite programming. The proposed method transforms the problem into a series of strictly convex quadratic semi-infinite programming problems. Several convergence results and a numerical experiment are given.  相似文献   

4.
Many problems in the design and implementation of computational schemes may be studied using the theory and methods of mathematical programming. One seeks to minimize bounds for the errors in the calculated results obtained from a given set of input data, exploiting analytical relations. We describe optimal quadrature rules and give an application to the evaluation of the sums of power series, belonging to an important class. We present results which are based on the theory of linear and semi-infinite programming. We also study the associated complexity issues and obtain simple qualitative results for the computational work required.  相似文献   

5.
In this paper, we develop two discretization algorithms with a cutting plane scheme for solving combined semi-infinite and semi-definite programming problems, i.e., a general algorithm when the parameter set is a compact set and a typical algorithm when the parameter set is a box set in the m-dimensional space. We prove that the accumulation point of the sequence points generated by the two algorithms is an optimal solution of the combined semi-infinite and semi-definite programming problem under suitable assumption conditions. Two examples are given to illustrate the effectiveness of the typical algorithm.  相似文献   

6.
K.O. Kortanek 《Optimization》2016,65(4):707-727
Motivated by a recent Basu–Martin–Ryan paper, we obtain a reduced primal-dual pair of a linear semi-infinite programming problem by applying an amended Fourier–Motzkin elimination method to the linear semi-infinite inequality system. The reduced primal-dual pair is equivalent to the original one in terms of consistency, optimal values and asymptotic consistency. Working with this reduced pair and reformulating a linear semi-infinite programme as a linear programme over a convex cone, we reproduce all the theorems that lead to the full eleven possible duality state classification theory. Establishing classification results with the Fourier–Motzkin method means that the two classification theorems for linear semi-infinite programming, 1969 and 1974, have been proved by new and exciting methods. We also show in this paper that the approach to study linear semi-infinite programming using Fourier–Motzkin elimination is not purely algebraic, it is mixed algebraic-analysis.  相似文献   

7.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

8.
An iterative linear programming algorithm for the solution of the convex programming problem is proposed. The algorithm partially solves a sequence of linear programming subproblems whose solution is shown to converge quadratically, superlinearly, or linearly to the solution of the convex program, depending on the accuracy to which the subproblems are solved. The given algorithm is related to inexact Newton methods for the nonlinear complementarity problem. Preliminary results for an implementation of the algorithm are given.This material is based on research supported by the National Science Foundation, Grants DCR-8521228 and CCR-8723091, and by the Air Force Office of Scientific Research, Grant AFOSR-86-0172. The author would like to thank Professor O. L. Mangasarian for stimulating discussions during the preparation of this paper.  相似文献   

9.
Based on the discretization methods for solving semi-infinite programming problems, this paper presents a new nonmonotonic trust region algorithm for a class of semi-infinite minimax programming problem. Under some mild assumptions, the global convergence of the proposed algorithm is given. Numerical tests are reported that show the efficiency of the proposed method.  相似文献   

10.
This paper develops a wholly linear formulation of the posynomial geometric programming problem. It is shown that the primal geometric programming problem is equivalent to a semi-infinite linear program, and the dual problem is equivalent to a generalized linear program. Furthermore, the duality results that are available for the traditionally defined primal-dual pair are readily obtained from the duality theory for semi-infinite linear programs. It is also shown that two efficient algorithms (one primal based and the other dual based) for geometric programming actually operate on the semi-infinite linear program and its dual.  相似文献   

11.
The so called dual parameterization method for quadratic semi-infinite programming (SIP) problems is developed recently. A dual parameterization algorithm is also proposed for numerical solution of such problems. In this paper, we present and improved adaptive algorithm for quadratic SIP problems with positive definite objective and multiple linear infinite constraints. In each iteration of the new algorithm, only a quadratic programming problem with a limited dimension and a limited number of constraints is required to be solved. Furthermore, convergence result is given. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

12.
The subject of this paper is the formulation and discussion of a semi-infinite linear vector optimization problem which extends multiple objective linear programming problems to those with an infinite number of objective functions and constraints. Furthermore it generalizes in some way semi-infinite programming. Besides the statement of some immediately derived results which are related to known results in semi-infinite linear programming and vector optimization, the problem mentioned above is interpreted as a decision model, under risk or uncertainty containing continuous random variables. Thus we treat the case of an infinite number of occuring states of nature. These types of problems frequently occur within aspects of decision theory in management science.  相似文献   

13.
The paper presents a logarithmic barrier cutting plane algorithm for convex (possibly non-smooth, semi-infinite) programming. Most cutting plane methods, like that of Kelley, and Cheney and Goldstein, solve a linear approximation (localization) of the problem and then generate an additional cut to remove the linear program's optimal point. Other methods, like the central cutting plane methods of Elzinga-Moore and Goffin-Vial, calculate a center of the linear approximation and then adjust the level of the objective, or separate the current center from the feasible set. In contrast to these existing techniques, we develop a method which does not solve the linear relaxations to optimality, but rather stays in the interior of the feasible set. The iterates follow the central path of a linear relaxation, until the current iterate either leaves the feasible set or is too close to the boundary. When this occurs, a new cut is generated and the algorithm iterates. We use the tools developed by den Hertog, Roos and Terlaky to analyze the effect of adding and deleting constraints in long-step logarithmic barrier methods for linear programming. Finally, implementation issues and computational results are presented. The test problems come from the class of numerically difficult convex geometric and semi-infinite programming problems.This work was completed under the support of a research grant of SHELL.On leave from the Eötvös University, Budapest, and partially supported by OTKA No. 2116.  相似文献   

14.
Mehrotra’s algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra’s algorithm. This paper describes a proposal and implementation of an alternative algorithm, an arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by the arc-search infeasible interior-point algorithm and Mehrotra’s algorithm, that the proposed arc-search infeasible interior-point algorithm is a more reliable and efficient algorithm than Mehrotra’s algorithm.  相似文献   

15.
A projected lagrangian algorithm for semi-infinite programming   总被引:8,自引:0,他引:8  
A globally convergent algorithm is presented for the solution of a wide class of semi-infinite programming problems. The method is based on the solution of a sequence of equality constrained quadratic programming problems, and usually has a second order convergence rate. Numerical results illustrating the method are given.  相似文献   

16.
We present a computationally efficient implementation of an interior point algorithm for solving large-scale problems arising in stochastic linear programming and robust optimization. A matrix factorization procedure is employed that exploits the structure of the constraint matrix, and it is implemented on parallel computers. The implementation is perfectly scalable. Extensive computational results are reported for a library of standard test problems from stochastic linear programming, and also for robust optimization formulations.The results show that the codes are efficient and stable for problems with thousands of scenarios. Test problems with 130 thousand scenarios, and a deterministic equivalent linear programming formulation with 2.6 million constraints and 18.2 million variables, are solved successfully.  相似文献   

17.
In the first part of this paper, we prove the convergence of a class of discretization methods for the solution of nonlinear semi-infinite programming problems, which includes known methods for linear problems as special cases. In the second part, we modify and study this type of algorithms for linear problems and suggest a specific method which requires the solution of a quadratic programming problem at each iteration. With this algorithm, satisfactory results can also be obtained for a number of singular problems. We demonstrate the performance of the algorithm by several numerical examples of multivariate Chebyshev approximation problems.  相似文献   

18.
In this paper, we present a novel sequential convex bilevel programming algorithm for the numerical solution of structured nonlinear min–max problems which arise in the context of semi-infinite programming. Here, our main motivation are nonlinear inequality constrained robust optimization problems. In the first part of the paper, we propose a conservative approximation strategy for such nonlinear and non-convex robust optimization problems: under the assumption that an upper bound for the curvature of the inequality constraints with respect to the uncertainty is given, we show how to formulate a lower-level concave min–max problem which approximates the robust counterpart in a conservative way. This approximation turns out to be exact in some relevant special cases and can be proven to be less conservative than existing approximation techniques that are based on linearization with respect to the uncertainties. In the second part of the paper, we review existing theory on optimality conditions for nonlinear lower-level concave min–max problems which arise in the context of semi-infinite programming. Regarding the optimality conditions for the concave lower level maximization problems as a constraint of the upper level minimization problem, we end up with a structured mathematical program with complementarity constraints (MPCC). The special hierarchical structure of this MPCC can be exploited in a novel sequential convex bilevel programming algorithm. We discuss the surprisingly strong global and locally quadratic convergence properties of this method, which can in this form neither be obtained with existing SQP methods nor with interior point relaxation techniques for general MPCCs. Finally, we discuss the application fields and implementation details of the new method and demonstrate the performance with a numerical example.  相似文献   

19.
In order to study the behavior of interior-point methods on very large-scale linear programming problems, we consider the application of such methods to continuous semi-infinite linear programming problems in both primal and dual form. By considering different discretizations of such problems we are led to a certain invariance property for (finite-dimensional) interior-point methods. We find that while many methods are invariant, several, including all those with the currently best complexity bound, are not. We then devise natural extensions of invariant methods to the semi-infinite case. Our motivation comes from our belief that for a method to work well on large-scale linear programming problems, it should be effective on fine discretizations of a semi-infinite problem and it should have a natural extension to the limiting semi-infinite case.Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.  相似文献   

20.
Finite-dimensional linear programs satisfy strong duality (SD) and have the “dual pricing” (DP) property. The DP property ensures that, given a sufficiently small perturbation of the right-hand-side vector, there exists a dual solution that correctly “prices” the perturbation by computing the exact change in the optimal objective function value. These properties may fail in semi-infinite linear programming where the constraint vector space is infinite dimensional. Unlike the finite-dimensional case, in semi-infinite linear programs the constraint vector space is a modeling choice. We show that, for a sufficiently restricted vector space, both SD and DP always hold, at the cost of restricting the perturbations to that space. The main goal of the paper is to extend this restricted space to the largest possible constraint space where SD and DP hold. Once SD or DP fail for a given constraint space, then these conditions fail for all larger constraint spaces. We give sufficient conditions for when SD and DP hold in an extended constraint space. Our results require the use of linear functionals that are singular or purely finitely additive and thus not representable as finite support vectors. We use the extension of the Fourier–Motzkin elimination procedure to semi-infinite linear systems to understand these linear functionals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号