首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Au-buffered TiO2 thin films have been prepared by radio frequency magnetron sputtering method. The structural and morphological properties of the thin films were characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The photocatalytic activity of the samples was evaluated by the photodecomposition of methylene blue. The Au-buffer thin layer placed between the TiO2 thin films significantly enhanced photocatalytic activity by 50%. Annealing the Au-buffered TiO2 thin film at 600 °C decreased the film roughness, but it increased the surface area and anatase crystalline size, enhancing the photocatalytic activity.  相似文献   

2.
TiO2 thin films have been prepared by physical vapour deposition (PVD) and plasma enhanced chemical vapour deposition (PECVD) to study the UV-induced photo-activity of this material. Wetting angle variations and photo-catalytic activity for the degradation of dyes upon UV illumination have been compared for thin films with different crystalline structure (amorphous, rutile and anatase), microstructure (columnar, compact, etc.) and porosities as estimated from the values of their refraction indices and their direct assessment with a quartz crystal monitor. The surface of the thin films became superhydrophilic upon UV light irradiation and then it recovered its original state by keeping the samples in the dark. Wetting angle decays follow very similar kinetics for amorphous and crystalline films, independently of their actual porosities. By contrast the photo-catalytic activity was very dependent on the crystalline structure of the films (anatase > rutile > amorphous) and on their porosities. The different behaviour depicted by the films with regard to these two properties suggests that they respond to different though related mechanisms and that they cannot be considered as equivalent when trying to prove the photo-activity of TiO2.  相似文献   

3.
Anatase TiO2 nano thin films were prepared on glass substrates by sol–gel dip coating method using Tween-80 as a surfactant, TiCl4 as the Ti precursor, and ethanol as a solvent. Atomic force microscopy, X-ray diffraction, and UV–Vis. photospectrometery experiments were performed to analyze the surface, structural and optical characteristics of the films. The effects of chemical aging time on the morphology, photocatalytic and superhydrophilicity behaviors of the films were studied. We show there is an optimum aging time at 2 h which photocatalytic and superhydrophilicity properties are at their maximum values simultaneously. This is useful in the self-cleaning industry.  相似文献   

4.
A dopant-free aerosol synthesis of highly crystalline TiO2 nanoparticles (20–35 nm) with tunable polymorphic content is demonstrated by rapid flame spray pyrolysis. By controlling precisely the total ambient oxygen partial pressure of the combustion in a quartz tube enclosure, anatase content as high as 96 wt% (4 wt% rutile) was obtained at high oxic flame conditions, while rutile content as high as 94 wt% (6 wt% anatase) was obtained under anoxic flames. The polymorphic variability lies within a narrow range of combustion equivalence ratios, that is, 1.0<Φ<1.5. Unlike any other flame aerosol syntheses, the anatase and rutile crystallite sizes were similar within each sample. Under highly oxic flame conditions (Φ<1.0), twinnings between anatase {0 1 1} planes could be observed, inferring oriented attachment taking place. Such mechanism could not, however, be seen under anoxic flame (Φ>1.0) possibly due to physical hindrance by surface carbonaceous content (typically <2 wt%). The carbon content can be easily removed by short calcination without significantly affecting the surface areas and crystallite properties of the original TiO2 nanocrystals, preserving hence its pristine state.  相似文献   

5.
Amorphous TiO2, prepared at room temperature through a sol–gel method implementing hydrolysis of TiCl4, has been supported on graphite rods and then annealed at 673 K. In this way graphite was completely covered by a porous anatase TiO2 layer, with an external thickness of about 1 μm, with graphite pores completely filled by the semiconductor particles. The obtained electrode was structurally characterized by SEM microscopy coupled to EDAX mapping and by Raman spectroscopy. A Pyrex annular reactor was designed in order to test the prepared electrodes for the photoelectrocatalytic degradation of 4-nitrophenol, a target pollutant dissolved in aqueous conductive solution. The continuous reactor worked in total recirculation mode and the degradation runs were carried out by applying near UV-light, bias or both energy sources. The influence of flow rate, initial 4-nitrophenol concentration and applied potential on the degradation rate was studied.  相似文献   

6.
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts.  相似文献   

7.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

8.
This paper studies the preparation of UO2/TiO2 composite ceramic fuel through sol gel-press forming. The research shows that at 1200–1300 °C, UO2/TiO2 composite ceramic grains are small, uniform and compact. Among them, UO2–0.5 wt%TiO2 has the highest density and good mechanical strength at 1250 °C.  相似文献   

9.
We prepared photocatalytic TiO2 thin films which exhibited relatively high growth rate and low impurity on polymer substrate by plasma enhanced atomic layer deposition (PE-ALD) from Ti(NMe2)4 [tetrakis (dimethylamido) Ti, TDMAT] and O2 plasma to show the self-cleaning effect. The TiO2 thin films with anatase phase and bandgap energy about 3.3 eV were deposited at growth temperature of 250 °C and the photocatalytic effects were compared with commercial Activ glass. From contact angles measurement of water droplet and photo-induced degradation test of organic liquid, TiO2 thin films with anatase phases showed superhydrophilic phenomena and decomposed organic liquid after UV irradiation. The anatase TiO2 thin film on polymer substrate showed highest photocatalytic efficiency after 5 h UV irradiation. We attribute the highest photocatalytic efficiency of TiO2 thin film with anatase structure to the formation of suitable crystalline phase and large surface area.  相似文献   

10.
Porous crystalline TiO2 films can be prepared at low temperatures (80 °C) by surfactant-assisted electrodeposition from TiCl3 solution. Nevertheless, up to now calcination at high temperatures (typically 450 °C) was still necessary to establish a good performance of these films in dye-sensitized solar cells (DSSC). With this study we report that water vapour treatment at much lower temperatures (150 °C) for 1 week improves the performance of the films in DSSC to the same degree as calcination although the overall crystallinity remains lower. Reason for the good efficiency is that the porous structure stays intact and thus the dye molecules can be better adsorbed. Avoiding high temperatures during the preparation process of TiO2 films for the application in DSSC enables the use of polymer substrates for the fabrication of flexible solar cells.  相似文献   

11.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

12.
13.
In this paper, RuO2/TiO2 nanotubes composites were synthesized by loading various amounts of RuO2 on TiO2 nanotubes. The symmetric supercapacitors based on these nanocomposites were fabricated by using gel polymer PVA-H3PO4-H2O as electrolyte. The electrochemical capacitance performance of the nanocomposites in these supercapacitors was investigated by current-potential responses, galvanostatic charge-discharge tests and electrochemical impedance spectroscopy. The results show that the three dimensional nanotube network of TiO2 offers a solid support structure for active materials RuO2, allows the active material to be readily accessible (available) for electrochemical reactions, and improves the efficiency of the active materials. A maximum specific capacitance of 1263 F/g was obtained for the RuO2 which was loading on TiO2 nanotubes.  相似文献   

14.
A clear ethanol based precursor sol obtained using diethanolamine has been utilized for the deposition of TiO2 films annealed at different temperatures. The influence of annealing temperature on the structural, optical and electrochemical properties of TiO2 thin films has been examined. Diethanolamine stabilizes the precursor sol due to its chelate forming ability with the alkoxides. It reacts as a tridentate ligand with the titanium isopropoxide. The threshold for the onset of crystallization in the films is identified at a temperature of 300 °C. The SEM study on the films elucidates segregation of irregularly shaped features into finer round clusters as a function of annealing temperature. As determined from the AFM study, the roughness parameter in the films has shown an increase with the annealing temperature. Photoluminescence measurements have given an indirect evidence for the presence of stoichiometric titanium oxide in the films. An optimum crystallite size and high ion storage capacity in the 300 °C annealed film has led to its superior electrochromic activity with the transmission modulation and coloration efficiency of the same film being 42% and 8.1 cm2 C−1, respectively at 550 nm. The highest degree of porosity in the 300 °C annealed film as established from the SEM study is also the reason behind its best electrochromic performance. In addition, the 300 °C annealed film also exhibits the fastest coloration switching kinetics.  相似文献   

15.
Highly porous and open interconnected pore structural TiO2 were prepared by a novel freeze casting method. In the experiment, the well-dispersed aqueous slurries were first frozen, and then dried at a reduced vacuum. Since the sublimation of ice crystals developed in the freezing process, the green bodies with highly porous were obtained. The phase composition and the microstructure of the sintered samples were characterized by XRD, SEM, porosity and the pore size distribution was measured by mercury porosimetry. The results demonstrated that the PVA concentration in the slurries remarkably affect the microstructure of TiO2 ceramics. The pore morphology of TiO2 ceramics with 3 wt.% polyvinyl alcohol (PVA) addition was dendritic, and however, the pore morphology of TiO2 ceramics with 6 wt.% PVA addition changed into columnar. The reason for the variation of the pore morphology was ascribed to the effect of the PVA gelation on the growth behavior of the ice crystals.  相似文献   

16.
A porous glass tube with a composition of 96SiO2·4B2O3 (wt%) supported TiO2 shows high photooxidation activity due to its transparency and large surface area. The surface area of the porous glass tube supported TiO2 is 10,000 times larger than that of conventional materials. TiO2 crystals supported are anatase type. Transparency of the porous glass tube is very important. Herein, sol–gel and chemical vapor deposition (CVD) processes were employed as TiO2 supporting processes. CVD process is more effective. For instance, an aqueous methylene blue solution with 1 ppm concentration almost thoroughly decomposes at a contact time of 300 s using porous glass tube supported TiO2 prepared by CVD process under irradiating with 10 W low-pressure mercury lamp, on the other hand, opaque porous alumina tube supported TiO2 was only 25%. The smaller the pore size of the porous glass tube, the larger the transparency and the permeation resistance through porous glass tube. Hence, porous glass tube with ca. 40 nm pore diameter is suitable from the standpoint of a practical use.  相似文献   

17.
Operando FTIR spectroscopy has been used to study the photocatalytic oxidation of acetone vapors over semiconductors films containing TiO2 and ZrO2. Preparation of these coatings was carried out by dipping a silicon wafer in stable sols containing particles of TiO2, Ti1−xZrxO2, or a mixture of ZrO2 and TiO2. These differences in chemical composition and phase homogeneity were selected in order to determine their effect on the photocatalytic performance. A transmission cell specifically designed for in situ studies of photocatalytic coatings was utilized for the FTIR experiments under reaction conditions. In contrast with investigations with powdered photocatalysts, the use of thin films guarantees that the whole semiconductor is irradiated, and for that reason purely photochemical reactions are monitored. Acetone adsorption takes place molecularly and is higher on the Ti1−xZrxO2 coating. This fact is very likely related to the higher specific surface of the samples containing Zr. However, the maximum photocatalytic rate for acetone degradation corresponds to the films composed by a binary mixture of TiO2 and ZrO2. On the other hand, remarkable differences on the type and concentration of intermediates appearing as a result of the photocatalytic oxidation of acetone are found for the coatings studied. A simple kinetic model was applied to analyze the evolution of both gas phase and surface species. The parameters obtained indicate that each specific surface process is affected in a different way by the variation in the composition of the photoactive films.  相似文献   

18.
Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy. The antibacterial activities of the composite films were studied by a fluorescence label method using Escherichia coli (E. coli) as a model. The as-prepared mesoporous TiO2 films showed much higher antimicrobial efficiency than that of glass and commercial P25 TiO2 spinning film. The facts would result from the high surface area, small crystal size and more active sites for the mesoporous catalysis. After the doping of Ag, a significant improvement for the antimicrobial ability was obtained. To elucidate the roles of the membrane photocatalyst and the doped silver in the antimicrobial activity, cells from a silver-resistant E. coli were used. These results indicated that Ag nanoparticles in the mesoporous were not only an antimicrobial but also an intensifier for photocatalysis. The as-prepared mesoporous composite film is promising in application of photocatalysis, antimicrobial and self-clean technologies.  相似文献   

19.
20.
TiO2 nanoparticles with a mean size of 20–30 nm were covered by ultrathin polydimethylsiloxane (PDMS) film, which shows hydrophobic properties. Surfaces consisting of the PDMS-coated TiO2 particles showed water contact angles close to 170°. In contrast to the hydrophobic films consisting of organic molecules, which can be photocatalytically decomposed on TiO2 in the presence of UV light, PDMS-coating on TiO2 was highly stable. The PDMS-coating completely suppressed the photocatalytic activity of TiO2. The unique properties of PDMS-coating can be exploited for UV protection layer and self-cleaning surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号