首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we describe a palladium‐catalyzed intermolecular O acylation of α‐diazoesters with ortho‐bromobenzaldehydes. The C(sp2)?H bond activation of the aldehyde is enabled by migratory insertion of a palladium carbene intermediate. The diazoesters act as modular three‐atom units to build up key seven‐membered palladacycles, which are transformed into a variety of isocoumarin derivatives upon reductive elimination. Mechanistic experiments and DFT calculations provide insight into the reaction pathway.  相似文献   

2.
Metal–metal bonds play a vital role in stabilizing key intermediates in bond‐formation reactions. We report that binuclear benzo[h ]quinoline‐ligated NiII complexes, upon oxidation, undergo reductive elimination to form carbon–halogen bonds. A mixed‐valent Ni(2.5+)–Ni(2.5+) intermediate is isolated. Further oxidation to NiIII, however, is required to trigger reductive elimination. The binuclear NiIII–NiIII intermediate lacks a Ni−Ni bond. Each NiIII undergoes separate, but fast reductive elimination, giving rise to NiI species. The reactivity of these binuclear Ni complexes highlights the fundamental difference between Ni and Pd in mediating bond‐formation processes.  相似文献   

3.
Metal–metal bonds play a vital role in stabilizing key intermediates in bond‐formation reactions. We report that binuclear benzo[h ]quinoline‐ligated NiII complexes, upon oxidation, undergo reductive elimination to form carbon–halogen bonds. A mixed‐valent Ni(2.5+)–Ni(2.5+) intermediate is isolated. Further oxidation to NiIII, however, is required to trigger reductive elimination. The binuclear NiIII–NiIII intermediate lacks a Ni−Ni bond. Each NiIII undergoes separate, but fast reductive elimination, giving rise to NiI species. The reactivity of these binuclear Ni complexes highlights the fundamental difference between Ni and Pd in mediating bond‐formation processes.  相似文献   

4.
Abstract

A new and relatively simple synthetic strategy has been described for Pd(II)-catalyzed C-C bond formation via alkylation of ortho C(sp2)-H bonds in substituted azobenzenes possessing (2-phenylamino)phenylazo directing group employing different alkyl iodides. The yields of various ortho alkylated products are found to be good to excellent (65%–85%). A palladocyclic intermediate complex has been isolated and fully characterized. Based on the experimental results and the isolation of the palladocyclic intermediate, a catalytic cycle involving a sequential C-H activation/oxidative addition followed by reductive elimination pathway has been proposed.  相似文献   

5.
One of the most compelling strategies for utilizing redox‐active ligands is to perform redox events at the ligands to avoid accessing prohibitively high energy oxidation states at the metal center. This has been demonstrated experimentally in many systems, yet there is little understanding of the fundamental electronic structures involved with these transformations or how to control them. Here, the reductive elimination of biphenyl from [M(isq)2Ph2] (M=Ti, Zr, and Hf and isq=2,4‐di‐tert‐butyl‐6‐tert‐butyliminosemiquinone) was studied computationally. It was found that the metal remains in the +IV oxidation state and all redox chemistry was mediated by the redox‐active ligands. Two types of electron‐transfer mechanisms were identified, an asymmetric unpaired electron transfer (UET) and a symmetric pairwise electron transfer (PET), the former always being lower in energy. The energetic differences between these two mechanisms were explained through simple molecular orbital theory arguments. Despite the metal’s redox‐inactivity, it still has a marked influence on the calculated energetics of the reaction, with the Ti systems being much more reactive than the Zr/Hf systems. This primarily originates from the shorter Ti?Ph bond, which leads to a stronger filled‐filled interaction between these ligands at the reactant state. This greater reactant destabilization leads to the lower activation energies.  相似文献   

6.
An iridium(I) catalyst system, modified with the wide‐bite‐angle and electron‐deficient bisphosphine dFppb (1,4‐bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch‐selective hydroarylation reactions between diverse acetanilides and aryl‐ or alkyl‐substituted alkenes. This provides direct and ortho‐selective access to synthetically challenging anilines, and addresses long‐standing issues associated with related Friedel–Crafts alkylations.  相似文献   

7.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

8.
The ability to cross‐couple secondary alkyl centers is fraught with a number of problems, including difficult reductive elimination, which often leads to β‐hydride elimination. Whereas catalysts have been reported that provide decent selectivity for the expected (non‐rearranged) cross‐coupled product with aryl or heteroaryl oxidative‐addition partners, none have shown reliable selectivity with five‐membered‐ring heterocycles. In this report, a new, rationally designed catalyst, Pd‐PEPPSI‐IHeptCl, is demonstrated to be effective in selective cross‐coupling reactions with secondary alkyl reagents across an impressive variety of furans, thiophenes, and benzo‐fused derivatives (e.g., indoles, benzofurans), in most instances producing clean products with minimal, if any, migratory insertion for the first time.  相似文献   

9.
Quaternary ammonium salts were synthesized in moderate to good yields through double oxidative C?H bond activation on azobenzenes. The mechanism of the highly regioselective reaction of 2‐azobiaryls with alkenes to give orange‐red‐fluorescent cinnolino[2,3‐f]phenanthridin‐9‐ium salts and 15H‐cinnolino[2,3‐f]phenanthridin‐9‐ium‐10‐ide is proposed to involve ortho C?H olefination of the 2‐azobiaryl compound with the alkene, intramolecular aza‐Michael addition, concerted metalation–deprotonation (CMD), reductive elimination, and oxidation.  相似文献   

10.
The use of Pd catalysis as a means to synthesize organic halides has recently received increased attention. Among the reported methods is the Pd‐catalyzed carboiodination, which uses extremely bulky ligands to facilitate carbon–halogen reductive elimination from PdII as the key catalytic step. When approaching substrates exhibiting low stereoselectivity, catalyst troubleshooting becomes difficult as there are few ligands known to promote the key reductive elimination. Herein, we present our finding that tertiary amines act as weakly coordinating ligands which significantly enhance diastereoselectivity in the Pd/QPhos‐catalyzed carboiodination of chiral N‐allyl carboxamides. This methodology allows efficient access to enantioenriched and densely functionalized dihydroisoquinolinones, and has been applied toward the asymmetric formal synthesis of (+)‐corynoline.  相似文献   

11.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

12.
A Pd‐catalyzed three‐component carbonylative‐annulation of 1‐hydroxy‐o‐carborane, internal alkyne and carbon monoxide has been achieved via direct and regioselective cage B?H activation. A class of C,B‐substituted carborano‐coumarin derivatives with potential applications in pharmaceuticals were facilely prepared in moderate to high yields with excellent chemoselectivity and regioselectivity. A plausible reaction mechanism including CO insertion, electrophilic B?H metalation, alkyne insertion and reductive elimination was proposed.  相似文献   

13.
Reduction of the Pd?PEPPSI precatalyst to a Pd0 species is generally thought to be essential to drive Buchwald–Hartwig amination reactions through the well‐ documented Pd0/PdII catalytic cycle and little attention has been paid to other possible mechanisms. Considered here is the Pd?PEPPSI‐catalyzed aryl amination of chlorobenzene with aniline. A neat reaction system was used in new experiments, from which the potentially reductive roles of the solvent and labile ligand of the PEPPSI complex in leading to Pd0 species are ruled out. Computational results demonstrate that anilido‐containing PdII intermediates involving σ‐bond metathesis in pathways leading to the diphenylamine product have relatively low barriers. Such pathways are more favorable energetically than the corresponding reductive elimination reactions resulting in Pd0 species and other putative routes, such as the PdII/PdIV mechanism, single electron transfer mechanism, and halide atom transfer mechanism. In some special cases, if reactants/additives are inadequate to reduce a PdII precatalyst, a PdII‐involved σ‐bond metathesis mechanism might be feasible to drive the Buchwald–Hartwig amination reactions.  相似文献   

14.
A Pd‐catalyzed efficient reductive cross‐coupling reaction without metallic reductant to construct a Csp2?Csp3 bond has been reported. A PdIV complex was proposed to be a key intermediate, which subsequently went through double oxidative addition and double reductive elimination to produce the cross‐coupling products by involving Pd0/II/IV in one transformation. The oxidative addition from PdII to PdIV was partially demonstrated to be a radical process by self‐oxidation of substrate without additional oxidants. Furthermore, the solvent was proved to be the reductant for this transformation through XPS analysis.  相似文献   

15.
An atom‐economic Pd0‐catalyzed synthesis of a series of pinacol‐type indolylboronates 3 from the corresponding bromoindole substrates 2 and pinacolborane (pinBH) as borylating agent was elaborated. The optimal catalyst system consisted of a 1 : 2 mixture of [Pd(OAc)2] and the ortho‐substituted biphenylphosphine ligand L‐3 (Scheme 4, Table). Our synthetic protocol was applied to the fast, preparative‐scale synthesis of 1‐substituted indolylboronates 3a – h in the presence of different functional groups, and at a catalyst load of only 1 mol‐% of Pd.  相似文献   

16.
A single set of reaction conditions for the palladium‐catalyzed amination of a wide variety of (hetero)aryl halides using primary alkyl amines has been developed. By combining the exceptionally high reactivity of the Pd‐PEPPSI‐IPentCl catalyst (PEPPSI=pyridine enhanced precatalyst preparation, stabilization, and initiation) with the soluble and nonaggressive sodium salt of BHT (BHT=2,6‐di‐tert‐butyl‐hydroxytoluene), both six‐ and five‐membered (hetero)aryl halides undergo efficient and selective amination.  相似文献   

17.
Nickel and palladium methoxides [(iPrPCP)M‐OMe], which contain the iPrPCP pincer ligand, decompose upon heating to give products of different kinds. The palladium derivative cleanly gives the dimeric Pd0 complex [Pd(μ‐iPrPCHP)]2 (iPrPCHP=2,6‐bis(diisopropylphosphinomethyl)phenyl) and formaldehyde. In contrast, decomposition of [(iPrPCP)Ni‐OMe] affords polynuclear carbonyl phosphine complexes. Both decomposition processes are initiated by β‐hydrogen elimination (BHE), but the resulting [(iPrPCP)M‐H] hydrides undergo divergent reaction sequences that ultimately lead to the irreversible breakdown of the pincer units. Whereas the Pd hydride spontaneously experiences reductive C?H coupling, the decay of its Ni analogue is brought about by its reaction with formaldehyde released in the BHE step. Kinetic measurements showed that the BHE reaction is reversible and less favourable for Ni than for Pd for both kinetic and thermodynamic reasons. DFT calculations confirmed the main conclusions of the kinetic studies and provided further insight into the mechanisms of the decomposition reactions.  相似文献   

18.
A new method has been developed for the synthesis of tetrahydro‐2H‐fluorenes based on a Pd(0)‐catalyzed benzylic C(sp3)?H functionalization. Importantly, the success of the cyclization step was dependent on there being substituents at the two positions ortho to the benzylic group to avoid an undesired C(sp2)?H functionalization. This method was subsequently used to prepare the right‐hand fragment of the hexacyclic triterpenoid benzohopanes, and therefore represents a powerful tool for the construction of the related compounds.  相似文献   

19.
In Suzuki–Miyaura reactions, anionic bases F? and OH? (used as is or generated from CO32? in water) play multiple antagonistic roles. Two are positive: 1) formation of trans‐[Pd(Ar)F(L)2] or trans‐[Pd(Ar)‐ (L)2(OH)] (L=PPh3) that react with Ar′B(OH)2 in the rate‐determining step (rds) transmetallation and 2) catalysis of the reductive elimination from intermediate trans‐[Pd(Ar)(Ar′)(L)2]. Two roles are negative: 1) formation of unreactive arylborates (or fluoroborates) and 2) complexation of the OH group of [Pd(Ar)(L)2(OH)] by the countercation of the base (Na+, Cs+, K+).  相似文献   

20.
Phenyl radical (Ph.) adsorption on monolayer graphene sheets is used to investigate the band‐gap manipulation of graphene through density functional theory. Adsorption of a single Ph. on graphene breaks the aromatic π‐bond and generates an unpaired electron, which is delocalized to the ortho or para position. Adsorption of a second radical at the ortho or para position saturates the radical by electron pairing and results in semiconducting graphene. Adsorption of a second radical at the ortho position (orthoortho pairing) is found to be more favorable than adsorption at the para position (orthopara pairing), and the orthoortho pairing has stronger effects on band‐gap opening compared with orthopara pairing. Adsorption of even numbers of Ph. on graphene by orthoortho and orthopara pairings, in general, increases the band gap. Our study shows promise of band‐gap manipulation in monolayer graphene by Ph. adsorption, leading to potential wider applications of graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号