首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of compounds (1-4) bearing one or two dansyl fluorophore(s) based on a Lys amino acid were synthesized in solid phase synthesis. Among them, two dansyl labeled Lys amino acid 3 detected Hg2+ in a 100% aqueous solution with high sensitivity (Kd=4.3 nM) via a turn-on response. Compound 3 was applied for monitoring Hg2+ in environmental and biological fields. 3 showed a hypersensitive response to Hg2+ without interferences from other metal ions and satisfied the requirements for monitoring the maximum allowable level (2 ppb) of mercury ions in drinking water demanded by EPA. In addition, 3 penetrated living HeLa cells and detected intracellular Hg2+. The organic spectroscopic data revealed the two sulfonamide and amide groups of 3 played a key role in stabilizing the 3-Hg2+ complex.  相似文献   

2.
Triphenylamine based, dumbbell shaped, highly fluorescent compound 1 was designed and synthesized. Compound 1 showed blue emission with quantum efficiency as high as 0.78 in benzene solution. Compound 1 showed turn-off sensitivity to picric acid, which is a common constituent of many powerful explosives and unavoidable environmental threats. The turn-off sensitivity to picric acid is attributed to the excited state charge transfer from compound 1 to picric acid. Compound 1 selectively senses picric acid with a detection limit of ∼400 ppb.  相似文献   

3.
We presented a ratiometric fluorescent probe dansylamide–rhodamine dyad (DANSRB) for selectively detecting Cr3+ in semi-aqueous solution. The detection mechanism relies on the fluorescent resonance energy transfer (FRET) process from the dansylamide (energy donor) to the rhodamine (energy acceptor) after the addition of Cr3+. The cell-permeability of DANSRB was confirmed by the two-photon fluorescence microscopy experiments, which demonstrated DANSRB was a good candidate for monitoring the intracellular Cr3+ level with the ratiometric fluorescent method. Combining the excellent selectivity, the ratiometric quantitative detection, and the cell-permeability, DANSRB may find a broad application in the investigation on biologically relevant species in living cells.  相似文献   

4.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

5.
A new tetraphenylethylene (TPE)-based sensor M1 bearing double 2-methylpyridyl-2-methylthiophenylamino units linked with triazole moieties was reported. Both UV–vis and fluorescence spectroscopic studies demonstrated that M1 was highly sensitive and selective toward Fe3+ over other metal ions in THF/H2O solution based on the aggregation-induced emission quenching mechanism. The lowest detection limit of M1 for Fe3+ is 0.7 μM. The detailed fluorescent titration study suggested that the binding stoichiometry of the M1–Fe3+ complex was 1:2, and the structure between M1 and the Fe3+ complex was confirmed by the 1H NMR titration.  相似文献   

6.
A click generated quinoline derivative (1) has been synthesized and used as a fluorescent probe for sequential recognition of Cu2+ and pyrophosphate (PPi) in DMSO/H2O (1:1, v/v, HEPES 20 mM, pH = 7.4) solution. Probe 1 displays high selectivity to Cu2+ ions, and the in-situ prepared probe 1-Cu2+ exhibits high selectivity toward pyrophosphate (PPi) with emission recovery of probe 1. Therefore, 1-Cu2+ complex can be applied as a fluorescence turn-on probe for PPi with high selectivity and sensitivity.  相似文献   

7.
A new colorimetric and fluorogenic probe (RN3) based on rhodamine-B has been successfully designed and synthesized. It displays a selective response to Hg2+ in the aqueous buffer solution over the other competing metals. Upon addition of Hg2+, the solution of RN3 exhibits a ‘naked eye’ observable color change from colorless to red and an intensive fluorescence with about 105-fold enhancement. The changes in the color and fluorescence are ascribed to the ring-opening of spirolactam in rhodamine fluorophore, which is induced by a binding of the constructed receptor to Hg2+ with the association and dissociation constants of 0.22 × 105 M−1 and 25.2 μM, respectively. The Job's plot experiment determines a 1:1 binding stoichiometry between RN3 and Hg2+. The resultant “turn-on” fluorescence in buffer solution, allows the application of a method to determine Hg2+ levels in the range of 4.0–15.0 μM, with the limit of detection (LOD) calculated at 60.7 nM (3σ/slope). In addition, the fluorescence ‘turn-off’ and color ‘fading-out’ happen to the mixture of RN3-Hg2+ by further addition of I or S2−. The reversible switching cycles of fluorescence intensity upon alternate additions of Hg2+ and S2− demonstrate that RN3 can perform as an INHIBIT logic gate. Furthermore, the potential of RN3 as a fluorescent probe has been demonstrated for cellular imaging.  相似文献   

8.
The development of a water-soluble and small molecular weight fluorescent probe, 3-(4-methoxyphenyl)-4-(methylsulfanyl)-6-(pyridin-2-yl)pyridin-2(1H)-one (3), for detecting Zn2+ based on pyridine-pyridone skeleton is reported. We observed a clear chelation enhanced fluorescence effect of 3 in the presence of Zn2+. Other fluorescent properties of 3 are discussed.  相似文献   

9.
The cationic manganese tricarbonyl complexes containing η6-2-methylhydroquinone (2a), η6-2,3-dimethylhydroquinone (3a), η6-2-t-butylhydroquinone (4a), η6-tetramethylhydroquinone (5a) and η6-4,4′-biphenol (6a) are readily deprotonated to the corresponding neutral (η5-semiquinone)Mn(CO)3 (2b-6b) and anionic (η4-quinone)Mn(CO)3 (2c-5c) complexes. The X-ray structures of 2b-6b feature strong intermolecular hydrogen bonding interactions that result in the formation of supramolecular organometallic networks. Significantly, the substitution pattern at the semiquinone ring affects the stereochemistry of the hydrogen bonding interactions. NMR spectra of 2b, 3b and 5b reveal dynamic hydrogen bonding in solution.  相似文献   

10.
Yi-Bin RuanJuan Xie 《Tetrahedron》2011,67(45):8717-8723
Methylated fluorescein 1 was explored for fluorescence ‘turn-on’ and ratiometric detection of Hg2+ in THF and CH2Cl2/MeOH (v/v=9:1), respectively, with unexpected high selectivity. In the presence of Hg2+, characteristic structured absorption band of 1 diminished and a new sharp band appeared at 445 nm. Meanwhile a blue shifted and enhanced emission was observed. The ratio of the fluorescence intensity at 559 and 478 nm increased linearly with [Hg2+], and solution color changing from yellow to cyan under irradiation at 365 nm in CH2Cl2/MeOH. Job plot indicated a 1:1 stoichiometry for 1-Hg2+ complex in solution. 1H NMR titration and IR spectra suggested the coordination of carbonyl group in xanthene moiety to Hg2+, affording its spectral behavior. Compound 2 bearing two triazolyl amino esters in place of methyl group showed quite similar behavior to Hg2+, which indicated that substituents did not interfere with the specific binding behavior of fluorescein platform. Our work presents a new way to explore xanthene dyes as new chemosensors by modulating electron density on the xanthene ring through non-covalent interactions with carbonyl group.  相似文献   

11.
Blue sepal-color of Hydrangea macrophylla might be due to a supramolecular metal-complex pigment consisting of delphinidin 3-glucoside (1), co-pigments (5-O-caffeoylquinic acid (2), and/or 5-O-p-coumaroylquinic acid (3)) and Al3+ in an aqueous solution around pH 4.0. To clarify the mechanism of blue sepal-color development of hydrangea, we tried to reproduce the blue color in vitro by mixing 1 with designed synthetic co-pigments in the presence of Al3+ at pH 4.0. We at first succeeded in clarifying the essential functional structure in the co-pigment that could form the stable blue solution. Here, we present the structure of the blue pigment caused by an Al-complex coordinating of 1 at ortho-dihydroxyl groups of the B-ring, 1-hydroxy, 1-carboxylic acid, and the carbonyl residue in the ester at 5-position of 2 and/or 3. The hydrophobic interaction between the aromatic acyl residue at 5-position and the nucleus of 1 may also contribute to stabilize the complex.  相似文献   

12.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

13.
Atsuhisa Miyawaki 《Tetrahedron》2008,64(36):8355-8361
Branched supramolecular polymers have been prepared from the mixture of 3-cinnamamide-α-CD (1) and 3-Nα-cinnamamidehexancarbonyl-N?-cinnamamide-lysinamide-α-CD (3) and from the mixture of 3-cinnamamidehexanamide-α-CD (2) and 3. Compounds 1 and 2 formed a linear supramolecular polymer, whereas compound 3 having two guest moieties formed a hyperbranched supramolecular polymer. Physical properties of these supramolecular polymers were studied by viscosity measurements in aqueous solutions. When compound 3 was added to the solution of compound 2, the ηsp/C value of the mixture of 2 and 3 was found to be much higher than that of compound 2. These results indicate that compound 3 functions as a branching moiety to increase the viscosity. Supramolecular polymers consisting of compound 2 or 3 did not show the viscosity increase, whereas the mixture of 2 and 3 gave highly viscous solutions and formed fibers from the concentrated aqueous solutions. It is caused by the branching of linear supramolecular polymers with compound 3 and hydrophobic and/or hydrogen bonding interactions between supramolecular polymers.  相似文献   

14.
The reaction of dimethylthallium(III) hydroxide with picolinic acid (Hpic), 3-hydroxypicolinic acid (H23hpic) and 6-hydroxypicolinic acid (H26hpic) in an aqueous/methanol mixture afforded the complexes [TlMe2(pic)] (1), [TlMe2(H3hpic)] (2) and [TlMe2(H6hpic)] (3), respectively. Complex 3′, [NaTlMe2(6hpic)2]n, was obtained as a minor product from a methanolic solution of 3. Compounds 13 were characterized by IR and Raman spectroscopy and, in the cases of 1, 2 and 3′, by single-crystal X-ray diffraction. Complex 3′ is the first example of an H6hpic heterobimetallic compound to be isolated. The 1H and 13C NMR spectra of 1 and 2 are also discussed.  相似文献   

15.
Rhodamine-based chemosensors 1 and 2 were synthesized and self-assembled onto glass surfaces for the selective fluorescent sensing of Pb2+. The immobilized chemosensors showed fluorescent responses that were turned-on with Pb2+ in CH3CN, selectively over various metal ions. The Pb2+-selective fluorescent switch of the immobilized chemosensors was also reversible, allowing for repeated use for Pb2+ detection.  相似文献   

16.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   

17.
We report herein the first diaminocyclopent-2-enone-based catalytic chemodosimeter (3) for naked-eye and turn-on fluorescent detections of Cu2+ in pure aqueous solution. Compound 3 easily made available from furan-2-carbaldehyde and 2-aminobenzoic acid was found to show a highly selective and sensitive response toward Cu2+ by way of Cu2+-coordination promoted formation of Stenhouse salt and subsequent decomposition to highly fluorescent 2-aminobenzoate.  相似文献   

18.
A simple Schiff-base derivative with salicylaldehyde moieties as fluorescent probe 1 was reported by aggregation-induced emission (AIE) characterization for the detection of metal ions. Spectral analysis revealed that probe 1 was highly selective and sensitive to Al3+. The probe 1 was also subject to minimal interference from other common competitive metal ions. The detection limit of Al3+ was 0.4 μM, which is considerably lower than the World Health Organization standard (7.41 μM), and the acceptable level of Al3+ (1.85 μM) in drinking water. The Job's plot and the results of 1H-NMR and FT-IR analyses indicated that the binding stoichiometry ratio of probe 1 to Al3+ was 1:2. Probe 1 demonstrated a fluorescence-enhanced response upon binding with Al3+ based on AIE characterization. This response was due to the restricted molecular rotation and increased rigidity of the molecular assembly. Probe 1 exhibited good biocompatibility, and Al3+ was detected in live cells. Therefore, probe 1 is a promising fluorescence probe for Al3+ detection in the environment.  相似文献   

19.
Zhaochao Xu  Jingnan Cui  Rong Zhang 《Tetrahedron》2006,62(43):10117-10122
The design, synthesis, and photophysical evaluation of a new naphthalimide-based fluorescent chemosensor, N-butyl-4-[di-(2-picolyl)amino]-5-(2-picolyl)amino-1,8-naphthalimide (1), were described for the detection of Zn2+ in aqueous acetonitrile solution at pH 7.0. Probe 1 showed absorption at 451 nm and a strong fluorescence emission at 537 nm (ΦF=0.33). The capture of Zn2+ by the receptor resulted in the deprotonation of the secondary amine conjugated to 1,8-naphthalimide so that the electron-donating ability of the N atom would be greatly enhanced; thus probe 1 showed a 56 nm red-shift in absorption (507 nm) and fluorescence spectra (593 nm, ΦF=0.14), respectively, from which one could sense Zn2+ ratiometrically and colorimetrically. The deprotonated complex, [(1-H)/Zn]+, was calculated at m/z 619.1800 and measured at m/z 618.9890. In contrast to these results, the emission of 1 was thoroughly quenched by Cu2+, Co2+, and Ni2+. The addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+, and Pb2+ produced a nominal change in the optical properties of 1 due to their low affinity to probe 1. This means that probe 1 has a very high fluorescent imaging selectivity to Zn2+ among metal ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号