首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferromagnetic Mn-Al alloy powders were fabricated by mechanical milling and heat treatment with gas-atomized powders. Different processes, i.e., heat treatment before ball milling and ball milling before heat treatment, result in different microstructures and magnetic properties of the powders. It was found that Hc increased and Mr decreased with the size reduction regardless of the sequence of heat treatment and ball milling. However, tendency of the change in Hc and Mr depended on the sequence. Further annealing of the powders ball-milled after heat treatment resulted in slight decrease of Hc and large increase of Mr. The magnetic properties, Mr = 41.2 emu/g, Hc = 3.1 kOe, were obtained from the powders ball-milled for 5 h after heat treatment at 650 °C for 20 min, and subsequent annealing at 280 °C for 20 min.  相似文献   

2.
Nanostructured Al 6061–x wt.% TiC (x = 0.5, 1.0, 1.5 and 2.0 wt.%) composites were synthesised by mechanical alloying with a milling time of 30 h. The milled powders were consolidated by cold uniaxial compaction followed by sintering at various temperatures (723, 798 and 873 K). The uniform distribution and dispersion of TiC particles in the Al 6061 matrix was confirmed by characterising these nanocomposite powders by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The mechanical properties, specifically the green compressive strength and hardness, were tested. A maximum hardness of 1180 MPa was obtained for the Al 6061–2 wt.% TiC nanocomposite sintered at 873 K, which was approximately four times higher than that of the Al 6061 microcrystalline material. A maximum green compressive strength of 233 MPa was obtained when 2 wt.% TiC was added. The effect of reinforcement on the densification was studied and reported in terms of the relative density, sinterability, green compressive strength, compressibility and Vickers hardness of the nanocomposites. The compressibility curves of the developed nanocomposite powders were also plotted and investigated using the Heckel, Panelli and Ambrosio Filho and Ge equations.  相似文献   

3.
Si3N4-TiN composites were prepared by spark plasma sintering (conventional sintering (SPS1) and in situ reaction sintering (SPS2)). Homogeneous distribution of equiaxed TiN grains in Si3N4 matrix results in the highest microhardness (21.7 GPa) and bending strength (621 MPa) of sample SPS1 sintered at 1550 °C. Dispersion of elongated TiN grains in Si3N4 matrix results in the highest fracture toughness (8.39 MPa m1/2) of sample SPS2 sintered at 1300 °C.  相似文献   

4.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

5.
Friction spot welding (FSpW) is a relatively new solid state joining technology developed by GKSS. In the present study, FSpW was applied to join the 6061-T4 aluminum alloy sheet with 2 mm thickness. The microstructure of the weld can be classified into four regions, which are stir zone (SZ), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and the base material (BM), respectively. Meanwhile, defects such as bonding ligament, hook and voids are found in the weld, which are associated to the material flow. The hardness profile of the weld exhibits a W-shaped appearance and the minimum hardness is measured at the boundary of TMAZ and SZ. Both the tensile/shear strength and cross-tension strength reach the maximum of 7117.0 N and 4555.4 N at the welding condition of the rotational speed of 1500 rpm and duration time of 4 s. Compared to cross-tension strength, the tensile/shear strength were stable with the variation of processing parameters. Three different fracture modes are observed under tensile/shear loading, which are plug type fracture, shear fracture and plug-shear fracture. There are also there different fracture modes under cross-tension loading, which are plug type fracture (on the upper sheet), nugget debonding and plug type fracture (on the lower sheet).  相似文献   

6.
Porous HAP pellets suitable for loading therapeutic agents were prepared using microcrystalline cellulose (MCC) as pore former and sodium carbonate as sintering aid (SAID). The effect of sintering temperature on the microstructure, mechanical properties and disintegration of pellets prepared at different SAID content was studied. Pellets were characterized by SEM, image analysis, porosimetry and surface area. Secondary phases were identified by PXRD, ATR-FTIR and Raman spectroscopy. Increasing the sintering temperature decreased the diameter, porosity, surface area and friability of the pellets but increased the pore size, tensile strength and disintegration time. The effect of SAID was dependent on sintering temperature. With 5% SAID, a secondary β-tricalcium phosphate (β-TCP) phase was formed, indicated by FTIR peak at 980 cm?1 and characteristic PXRD reflections, whereas with 10%, a secondary B-type carbonated hydroxyapatite phase (CHA) formed, indicated by FTIR peaks at 878 and 1450 cm?1, a broad Raman peak in the region 1020 to 1050 cm?1 and PXRD reflections. Pellets prepared with SAID showed high strength and also porosity. The biphasic HAP/β-TCP pellets exhibited remarkably great strength (4.39 MPa) at the high sintering temperature, while still retaining 43.9% porosity. Relationships were established between the mechanical properties or disintegration time of the porous pellets and the microstructural parameters.  相似文献   

7.
The focus of the present work is the study of carbon co-deposition effect on the optical and mechanical properties of zirconia films. Optical and dielectric constant, band gap and transition lifetime of such composite systems were determined, as well as their elasticity properties. The thin ZrO2−x-C films were sputter-deposited on silicon and polycarbonate, from a pure ZrO2 and graphite targets in a radio-frequency argon plasma.Besides the zirconia phase and crystalline parameter changes induced by carbon addition, the electronic properties to the films were significantly modified: a drastical optical gap lowering was observed along an increased electronic dielectric constant and refractive index. The invariance of the film elasticity modulus and the similarity of the optical transition lifetime values with those of pure amorphous carbon films indicate an immiscibility of the ceramic and carbon components of the film structure.  相似文献   

8.
 Y2O3-based nanocomposites were fabriacted by hot-press and the microstructures and mechanical properties were investigated. Transmission-electron-microscope observations revealed that the SiC particles were distributed both within Y2O3 matrix grains and at the grain boundaries. Significant mechanical properties improvements were identified particularly at high temperatures above 1000 oC both in air and inert atmospheres. Received: 2 January 1997 / Accepted: 27 March 1997  相似文献   

9.
For the first time the polyetheretherketone (PEEK)-hydroxyapatite (HA) nanocomposite materials were successfully prepared, and their microstructure and mechanical properties, such as tensile strength, load-displacement and Young's modulus, were examined. The specimens laminated by the PEEK-HA composite layers with 5 vol.% and 15 vol.% HA were also successfully made, which gave a promising mechanical strength and a high HA content on the specimen surface. This novel approach should be of significance in manufacturing PEEK-HA biomaterials with both satisfactory mechanical properties and high bioactivity.  相似文献   

10.
《Advanced Powder Technology》2014,25(5):1500-1509
Particulate TiO2 (with varying particle size produced by mechanical milling) dispersed AA7075 composites are synthesised by short duration milling (10 min) followed by room temperature unidirectional compaction (with varying pressure) and sintering. Apparent and relative density of the alloy powder and composites are measured. The effect of reinforcement particle size on the compressibility behaviour of the composites is demonstrated. Mechanically milled (for 25 h) alloy powder shows lower relative density than coarse alloy powder. In addition, compressibility of the alloy composites decreases with decreasing particle size of the reinforcement. In contrast, the sinterability of the composites increases with decreasing dispersoid’s size due to easy filling up of finer pores and particle induced precipitation.  相似文献   

11.
Nano-sized copper powder with an average size of 50 nm fabricated by chemical reduction method of hydrazine hydrate was consolidated using spark plasma sintering (SPS) method. The relationship between the sintering temperature and relative density of the nanocrystalline bulk copper was studied, the microstructure and the mechanical properties were examined, and the sintering mechanism was discussed. It was concluded that the nanocrystalline copper with a relative density greater than 99% and the yield strength of nearly 650 MPa could be fabricated by SPS process with the holding pressure of 600 MPa, sintering temperature of 350 °C, holding time of 5 min, and heating rate of 100 °C/min. Both refinement of the grains and formation of the extensive nanoscale twins in the NC bulk copper are the main factors to strengthen the metal.  相似文献   

12.
《材料科学技术学报》2019,35(11):2600-2607
The MoNbTaTiV refractory high-entropy alloy(RHEA) with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA) and spark plasma sintering(SPS).The microstructural evolutions,mechanical properties and strengthening mechanisms of the alloys were systematically investigated.The nanocrystalline mechanically alloyed powders with simple bodycentered cubic(BCC) phase were obtained after 40 h MA process.Afterward,the powders were sintered using SPS in the temperature range from 1500 ℃ to 1700 ℃.The bulk alloys were consisted of submicron scale BCC matrix and face-centered cubic(FCC) precipitation phases.The bulk alloy sintered at 1600℃ had an average grain size of 0.58 μm and an FCC precipitation phase of 0.18 μm,exhibiting outstanding micro-hardness of 542 HV,compressive yield strength of 2208 MPa,fracture strength of 3238 MPa and acceptable plastic strain of 24.9% at room temperature.The enhanced mechanical properties of the MoNbTaTiV RHEA fabricated by MA and SPS were mainly attributed to the grain boundary strengthening and the interstitial solid solution strengthening.It is expectable that the MA and SPS processes are the promising methods to synthesize ultra-fine grains and homogenous microstructural RHEA with excellent mechanical properties.  相似文献   

13.
Mechanical alloying process was modeled by statistical approach for producing of Al/SiC nanocomposite powders. The process variables included two dimensionless variables TV where T and V are milling time and speed, respectively, and P1/P2 where P1 and P2 are balls weight and powders weight, respectively. Responses of the process were crystallite size of the aluminum matrix, lattice strain of the aluminum matrix, and mean particle size of nanocomposite powders. The response variables were obtained by X-ray diffraction patterns (XRD), transmission electron microscopy (TEM), and laser particle size analyzer (LPSA). Two statistical models namely, fixed effects and regression model were developed. Analysis of variance (ANOVA) at 5% levels of significance for fixed effects model and 1% for regression model were performed. Results showed that P1/P2 has a significant effect on the crystallite size, and lattice strain of the aluminum matrix and TV has a significant effect on the crystallite size, and lattice strain of the aluminum matrix as well as mean particle size of nanocomposite powders. ANOVA for regression model showed that the linear effects of TV and P1/P2 variables were significant for crystallite size, lattice strain of the aluminum matrix, and mean particle size of nanocomposite powders. The final regression models were checked and accepted by residual analysis.  相似文献   

14.
Alignment of silicon nitride nanorods in Nylon-6 polymeric matrix has been achieved through melt extrusion process. Tensile properties of as-fabricated single fibers show that the strength and modulus of a nanocomposite fibers increased by 273% and 610%, respectively, as compared to the neat Nylon-6 fibers. Field emission scanning electron microscopy (FE-SEM) studies have confirmed the successful alignment of nanorods along the filament length. Larger increase in modulus of the nanorods reinforced Nylon-6 was at a cost of about 35% decrease (reduced from 65% to 30%) in fracture strain. In an attempt to retain the ultimate strain, nanorods were replaced by spherical Si3N4 (30 nm dia) particles and it was demonstrated that the improvement in tensile properties is still by 179% for strength and 276% for modulus practically without any loss of fracture strain.  相似文献   

15.
The dynamic compressive properties of SiC particle reinforced pure Al matrix composites, fabricated by spark plasma sintering technique with mixture powders prepared by mechanical alloying process, were tested in this paper. Two different average SiC particle sizes of 12 μm and 45 μm were adopted, and the compressive tests of these composites at strain rates ranging from 800/s to 5200/s were conducted by split Hopkinson pressure bar. The damage mechanism of the SiCp/Al composites was analyzed through the microstructural observations and high-precision density measurements. Results show that the dynamic properties and damage accumulation of these composites are significantly affected by the particle distribution, size, particle cracking, particle/matrix interface debonding and adiabatic heat softening. The composites containing smaller SiC particles exhibit higher flow stress, lower strain rate sensitivity, and less damage at high strain rate deformation.  相似文献   

16.
In the present paper, the microstructure and mechanical properties of nanostructured Al–Mg–Si based AA6061 alloy obtained by high energy ball milling and spark plasma sintering were reported. Gas atomized microcrystalline powder of AA6061 alloy was ball milled under wet condition at room temperature to obtain nanocrystalline powder with grain size of 30 nm. The nanocrystalline powder was consolidated to fully dense compacts by spark plasma sintering (SPS) at 500 °C. The grain size after SPS consolidation was found to be 85 nm. The resultant SPS compacts exhibited microhardness of 190–200 HV100 g, compressive strength of 800 MPa and strain to fracture of 15%.  相似文献   

17.
Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring significant benefits both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure and properties.  相似文献   

18.
In this study, phenolic foam (PF)/multi-walled carbon nanotubes (MWCNTs) composites were fabricated by in-situ polymerization, and carbonized foams based on these PF foams were prepared and the electrical property was investigated. TEM results indicated excellent dispersion of MWCNTs in the phenolic resin matrix. Scanning electron microscope results indicated that PF composites exhibited smaller cell size, thicker cell wall thickness, and higher cell density, compared with pure PF. The incorporating of MWCNTs significantly improved the mechanical properties of PF. All PF composites showed a lower thermal conductivity versus pure PF. Moreover, the carbonized pure and composites PF exhibited open-cell three-dimensional skeleton carbon structure and the MWCNTs were well-dispersed on the surface of the skeletons. It is noteworthy that the introduction of MWCNTs significantly improved the electrical performances of foams and carbonized foams by construction of conductive MWCNTs network.  相似文献   

19.
Al-Si-Ni-Ce alloys with the composition of Al78.5Si19Ni2Ce0.5, Al76Si19Ni4Ce1 and Al73Si19Ni7Ce1 were atomized and then sintered by using spark plasma method. The microstructure of the as-atomized powders, sintered and hot-extruded samples was analyzed. The influences of granularity and sintering parameters including time and temperature on the density of sintered alloy were also discussed. It is shown that the atomized powders are composed of Si, Al11Ce3, Al3Ni and alpha Al. Tiny Al3Ni particles precipitate from supersaturated matrix near the powder boundaries during SPS. Hot-extrusion process leads to the layer structure and more homogeneous distribution of precipitates. These alloys exhibit high comprehensive mechanical properties with combination of high Vicker's micro-hardness, moderate tensile properties and elongation, which provide a novel kind of promising engineering materials.  相似文献   

20.
Cellulose nanocrystal (CNC) reinforced poly(vinyl alcohol) (PVA) hydrogels with a water content of ∼92% were successfully prepared with glutaraldehyde (GA) as a cross-linker. The effects of the CNC content on the thermal stability, swelling ratio and mechanical and viscoelastic properties of the cross-linked hydrogels were investigated. The compressive strength at 60% strain for the hydrogels with 1 wt% CNCs increased by 303%, from 17.5 kPa to 53 kPa. The creep results showed that the addition of CNCs decreased the creep elasticity due to molecular chain restriction. The almost complete strain recovery (∼97%) after fixed load removal for 15 min was observed from the hydrogels with CNCs, compared with 92% strain recovery of the neat cross-linked PVA hydrogels. The incorporation of CNCs did not affect the swelling ratio and thermal stability of the hydrogels. These results suggest the cross-linked CNC-PVA hydrogels have potential for use in biomedical and tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号