首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of acrylic impact modifier, chlorinated polyethylene (CPE) impact modifier, oil palm empty fruit bunch (OPEFB) fiber, and mixing temperature on the processability of poly(vinyl chloride) (PVC) compounds was investigated. The acrylic impact modifier was the most efficient additive in reducing the fusion time of the PVC, followed by the OPEFB fiber and the CPE impact modifier, whereas OPEFB was the most efficient in decreasing the melt viscosity of the compounds, followed by CPE and acrylic. A PVC compound containing 9 phr of CPE and 40 phr of OPEFB had high values of fusion time and end torque. The fusion time and melt viscosity of all of the PVC compounds decreased with increasing mixing temperature. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

2.
采用乳液聚合工艺合成厂核—壳型丙烯酸酯类抗冲改性剂。该抗冲改性剂对提高聚氯乙烯(PVC)的抗冲击性能具有显著效果,同时也能改善PVC的加工性能。  相似文献   

3.
The compatibility, morphology, fusion behavior, and mechanical properties of blends of poly(vinyl chloride) (PVC), acrylic resin (ACR), and chlorinated polyethylene (CPE) (100/0–30/0–20) were studied. The experimental results show that the compatibility of the polyblend increases with the amount of ACR added. The blends composed of PVC/ACR/CPE (100/3–25/10–15) are fairly compatible. So far as impact strength is concerned, partially compatible blends are preferred.  相似文献   

4.
ABSTRACT

Oil palm empty fruit bunch (OPEFB) was heat treated at 180°C using a vacuum oven for one hour, extruded and compounded with high-density polyethylene at 10%, 20% and 30% weight fraction. The composites then were injection moulded into dumb-bell shaped specimens. The effect of composition and heat treatment on the thermal properties of composites were investigated using Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The tensile and flexural properties were also tested using an Instron Universal Testing Machine. TGA shows an increase in the degradation peak temperature of the heat-treated composites. DSC revealed an increasing trend in the degree of crystallinity (Xc) of the matrix as the heat-treated empty fruit bunch was used as a filler. An increment in the tensile modulus and tensile strain were observed for the treated fibre composites. In addition, the tensile strength value was increased for treated fibre composites with lower fibre loading.  相似文献   

5.
The mechanical properties of composites consisting of high-density polyethylene (HDPE) and oil palm fibrous wastes—that is, empty fruit bunch (EFB)—have been investigated. Tensile modulus showed an increase, whereas tensile strength, elongation at break, and impact strength decreased with increasing filler loading. The strong tendency of EFB to exist in the form of fiber bundles and the poor filler–matrix interaction is believed to be responsible for the poor strength displayed by the composites. Attempts to improve these properties using two types of coupling agents, that is, 3-aminopropyltrimethoxysilane (3-APM) and 3-aminopropyltriethoxysilane (3-APE) and two types of compatibilizers, poly(propylene–acrylic acid) (PPAA) and poly(propylene–ethylene–acrylic acid), (PPEAA), are described. While almost all chemical treatments increased the stiffness of the composites, limited improvement has been observed in the case of tensile strength. This have been attributed to the presence of fiber bundles that remain intact even after several types of chemical treatment have been carried out. Thus, the role of EFB as reinforcing agent is not fully realized. Scanning electron microscopy (SEM) micrographs revealed that the main energy-absorbing mechanisms contributing towards toughness enhancement is through the fiber bundle pull-out process. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2189–2203, 1998  相似文献   

6.
In this study, the diffusion of various types of solvent in oil palm empty fruit bunch/polyurethane composites, produced from chemically modified empty fruit bunches, was investigated. The solubility parameters and polymer–solvent interaction parameters of the produced composites were determined. The void contents of the composites were also determined before swelling tests to eliminate the free solvent present in the system. From the results obtained, we found that the diffusion of the solvents was dependent on the compatible group available and the voids present in the system. The solubility parameters of the empty fruit bunch/polyurethane composites with different degrees of chemical modification were 11.6 and 11.7 (cal/cm?3)1/2. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
By means of a twin-roll masticator and Brabender rheometer, the effect of chlorinated polyethylene (CPE) and polyethylene (PE) on the impact strength and processability of poly(vinyl chloride) (PVC) was studied. The experimental results show that CPE can promote the plasticity of PVC and the effect increases with the amount of CPE. Addition of a small amount of PE in PVC/CPE (100/12) makes an impressive improvement in the impact strength of the mixture. The impact strength of PVC/CPE/PE (100/ 12/2.5) at 20°C is 30.0 kJ/m2 higher than that of PVC/CPE (100/12). The dynamic viscoelastic spectra, tensile strength, and elongation test reveal that CPE is incompatible with PVC but may act as a compatibilizer for PVC/PE. The disperse state of the polyblend was studied by differential scanning calorimetry (DSC); it was found that the mixing sequence has an influence on the impact strength of the blend.  相似文献   

8.
The influence of oil palm empty fruit bunch (OPEFB) fiber and oil palm empty fruit bunches grafted with poly(methyl methacrylate) (OPEFB‐g‐PMMA) on the tensile properties of poly(vinyl chloride) (PVC) was investigated. The OPEFB‐g‐PMMA fiber was first prepared with the optimum conditions for the grafting reaction, which were determined in our previous study. To produce composites, the PVC resin, OPEFB‐g‐PMMA fiber or ungrafted OPEFB fiber, and other additives were first dry‐blended with a laboratory blender before being milled into sheets on a two‐roll mill. Test specimens were then hot‐pressed, and then the tensile properties were determined. A comparison with the composite filled with the ungrafted OPEFB fiber showed that the tensile strength and elongation at break increased, whereas Young's modulus decreased, with the incorporation of 20 phr OPEFB‐g‐PMMA fiber into the PVC matrix. The trend of the tensile properties obtained in this study was supported by functional group analysis, glass‐transition temperature measurements, and surface morphological analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Preparation of poly(butyl acrylate)‐grafted oil palm empty fruit bunch fibre (OPEFB) has been successfully carried out using H2O2/Fe2+ as a redox initiator in aqueous solution. The effects of reaction temperature and period, as well as the amount of monomer, initiator and nitric acid, on the percentage of grafting were investigated. The percentage of grafting increases with amount of monomer and can be controlled by setting the appropriate reaction conditions. The maximum percentage of grafting (about 265%) was obtained when the reaction was carried out without acid under optimum conditions (reaction period: 2 h, reaction temperature: 55 °C, amount of H2O2: 5.88 mmol) with 42.2 mmol of monomer. Mechanisms of grafting of butyl acrylate onto OPEFB were proposed. Characterization of the grafted OPEFB was done by Fourier‐transform infrared spectroscopy and scanning electron microscopy. The thermal properties were studied by thermogravimetric analysis. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
Fusion time, fusion temperature, and fusion torque of poly(vinyl chloride) (PVC) compounds with various components were studied in this article. Influences of chlorinated polyethylene (CPE), oxidized polyethylene (OPE), and calcium stearate on fusion characteristics of PVC compounds were illustrated. The synergistic reaction among CPE, OPE, and calcium stearate forms a powerful and effective processing aid that allows the PVC particles to fuse more quickly and uniformly. In PVC/CPE compounds, a higher concentration of CPE can function like a processing aid and help PVC particles to fuse together easily. Meanwhile, the interaction between a higher concentration of OPE and calcium stearate in PVC/OPE compounds can promote the PVC particles to fuse together easily in the beginning of the fusion process. However, the external lubricant property of OPE still exists and results in more intact PVC microparticles not fused. The fusion temperature of the PVC in a Haake mixing bowl increases as the fusion time increases. On the other hand, the fusion torque decreases as the fusion time increases. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 699–705, 1999  相似文献   

11.
Some experimental chlorinated polyethylene (CPE) resins that produced translucent blends with PVC were used to study the effects of CPE chlorine content and chlorine distribution on the morphology, optical clarity, and toughness of blends with PVC. The CPE resins were characterized in terms of the glass transition temperature, residual crystallinity, density, and refractive index. Increasing residual crystallinity and increasing chlorine content both increased the refractive index closer to that of PVC. A linear relationship was observed between the fourth power of the refractive index and the CPE glass transition temperature. With a phase-separated blend morphology in all cases, improved transparency was achieved in this system by reducing the refractive index difference between CPE and PVC. Both haze and transparency showed the predicted linear dependence on the square of the refractive index difference. To a first approximation, modifications of the experimental CPE resins that improved optical transparency of the blends also tended to reduce the toughness enhancement.  相似文献   

12.
In this research, biodegradable composites were prepared with zein as a polymer matrix and oil palm empty fruit bunch (OPEFB) as fiber reinforcement. The fibers were treated with sodium hydroxide (NaOH). The effects of sodium hydroxide treatment on sound absorption, thermal stability, and fiber‐polymer matrix interaction in composites were examined. The acoustical sound absorption coefficients of the composites were evaluated using two‐microphone transfer function impedance tube method. The spectral, thermal, and morphological studies of the composites were analyzed and characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. It was found that in all the biodegradable composites, the sound absorption coefficients increased as the frequency increased. Increases in fiber loading caused sound absorption coefficients of the composites to increase. The sodium hydroxide treatment showed a better interface adhesion on fiber and zein matrix. It was also found that this treatment increased the sound absorption coefficients. This was supported by qualitative analysis on the SEM micrographs and FTIR spectrum. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44164.  相似文献   

13.
Blends of poly(vinyl chloride) (PVC) with different ratios of chlorinated polyethylene (CPE) were degradated by the thermogravimetric method under dynamic conditions (50–600°C) in an inert atmosphere. The effect of the miscibility and composition of the PVC/CPE blends on the thermal stability were investigated. DSC curves of the blends show neither a shift of the PVC glass transition temperature nor a shift of the CPE melting temperature, which means that these blends are heterogeneous. The characteristics of the TG curves were determined, some of which (T1%,T5%, Δm1) can be used as indicators of the thermal stability of the blend. The apparent activation energy of PVC dehydrochlorination in the blends was also calculated. Comparison of the experimental TG curves and TG curves predicted by the additivity rule indicates the existence of the components' interaction in the PVC/CPE blends. The addition of CPE improves the thermal stability of PVC for all the investigated blends in the temperature range where αcalc is greater than αexp. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 166–172, 2000  相似文献   

14.
C.P. Doubé  D.J. Walsh 《Polymer》1979,20(9):1115-1120
The behaviour of mixtures of poly(vinyl chloride) (PVC) and solution chlorinated polyethylene (SCPE) has been investigated as a function of temperature. These polymers have been found to be compatible over some ranges of composition and exhibit the phenomenon of a lower critical solution temperature (LCST). The thermally-induced phase separation has been investigated by optical, dynamic mechanical, and electron microscope techniques. The single phase mixture has been investigated by scanning analytical electron microscopy. Some investigation of the thermodynamics of the mixture has been made and the heat of mixing term has been found to be negative and small, i.e. favouring mixing. It has been shown that the technique of in situ polymerization overcomes many of the problems of preparing these polymer mixtures in the solid state.  相似文献   

15.
Effect of oil palm empty fruit bunch (OPEFB) fiber and poly(methyl acrylate) grafted OPEFB on several mechanical properties of poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blends using HAKEE Rheomixer at the rotor speed of 50 rpm, mixing temperature 150°C, and mixing period of 20 min. The fiber loadings were varied from 0 to 30% and the effect of fiber content in the composites on their ultimate tensile strength (UTS), Young's modulus, elongation at break, flexural modulus, hardness, and impact strength were determined. An increasing trend was observed in the Young's modulus, flexural modulus, and hardness with the addition of grafted and ungrafted fiber to the PVC/ENR blends. However the impact strength, UTS, and elongation at break of the composites were found to decrease with the increase in fiber loading. An increase in elongation at break and UTS and decrease in the flexural and Young's modulus was observed with the addition of PMA‐g‐OPEFB fiber compared to ungrafted fiber. This observation indicates that grafting of PMA onto OPEFB impart some flexibility to the blend. The morphology of cryogenically fractured and tensile fracture surfaces of the composites, examined by a scanning electron microscope shows that the adhesion between the fiber and the matrix is improved upon grafting of the OPEFB fiber. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The thermal decomposition of chlorinated poly(vinyl chloride) and three plasticized chlorinated poly(vinyl chloride) systems has been investigated. The routes of decomposition of these systems have been elucidated by investigating char formation and by using a combination of thermogravimetric analysis (TGA) and prolysis/gas chromatography/mass spectroscopy methods (Py/GC/MS). The effects of the charforming/smoke‐suppressing iron(III) compound FeOOH in these polymer systems has also been investigated. The structure of both CPVC polymer and plasticzer determine the path of thermal decomposition and also the quantity and nature of the decomposition compunds formed. Changes in oxygen index and the formation of smoke during burning in these systems have been related to the char that is formed and also to the chemical nature of the decomposition products.  相似文献   

17.
Thermal degradation of poly(vinyl chloride) (PVC) was studied in nitrogen atmosphere in the presence of rubber seed oil and epoxidized rubber seed oil, barium and lead soaps of rubber seed oil, and epoxidized seed oil at various temperatures. The rate of dehydrochlorination at 1% degradation and the time required to attain 1% degradation were used to assess the effect of the thermal susceptibility of PVC to dehydrochlorination. It was found that epoxidized rubber seed oil, the metal soaps of rubber seed oil, and epoxidized rubber seed oil markedly enhance the thermal stability of PVC. The order of increasing stabilizing influence was metal soaps of epoxidized rubber seed oil > metal soaps of rubber seed oil > epoxidized rubber seed oil > rubber seed oil. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The volatile products from the thermal degradation of poly(vinyl chloride) (PVC) resins and compounds are shown to contain trace amounts of vinyl chloride. Data presented show the effect of temperature and resin type on the amount of vinyl chloride formed. At the maximum temperatures involved in PVC processing which may reach 210°C, vinyl chloride monomer (VCM) evolution amounts to less than 1 ppm (resin basis). A technique employing a thermogravimetric balance and charcoal adsorption of volatiles is described for studying thermal degradation of PVC. The volatiles are analyzed for vinyl chloride by gas chromatography. Peak identity was confirmed by mass spectrometry.  相似文献   

19.
The volatile products from the thermal degradation of poly(vinyl chloride) (PVC) resins and compounds are shown to contain trace amounts of vinyl chloride. Data presented show the effect of temperature and resin type on the amount of vinyl chloride formed. At the maximum temperatures involved in PVC processing which may reach 210°C., vinyl chloride monomer (VCM) evolution amounts to less than 1 ppm (resin basis). A technique employing a thermogravimetric balance and charcoal adsorption of volatiles is described for studying thermal degradation of PVC. The volatiles are analyzed for vinyl chloride by gas chromatography. Peak identity was confirmed by mass spectrometry.  相似文献   

20.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号