首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of poly[ethylene(vinylacetate)] (EVAc-45; 45% VAc content) and polychloroprene (CR) have been studied with respect to capillary and dynamic flow. It is found that EVAc-45, CR, and their blends are shear thinning (pseudoplastic) in nature. Though shear viscosity (ηa) and dynamic out-of-phase viscosity (η′E) obeys power law, dynamic elongational viscosity (η′E) does not follow it due to the synchronization of molecular vibration with the applied frequency at around 11 Hz. Both ηa and η′E of the blends show positive deviation with respect to their additive values. The relative positive deviation (RPD) in shear flow increases with increasing temperature and shear rate. In the case of dynamic flow, RPD increases with increasing temperature but exhibits a decreasing trend with increasing frequency. RPD can be fitted well into a fifth-order equation with a weight fraction of CR (WCR) in EVAc-45—CR blends. From rheological point of view, this relative positive deviation indicates blend compatibility between EVAc-45 and CR. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1759–1765, 1997  相似文献   

2.
The electrospinning ability of PLA/PEG system at the melt state was investigated through the viscoelastic parameters obtained from dynamic shear and extensional rheometers. PLA and PEG were melt‐blended at various composition ratios. Effect of PEG concentration on the PLA thermal behavior was studied by the differential scanning calorimetry (DSC). According to DSC and wide‐angle X‐ray diffraction, the PLA crystallinity increased and the crystalline structure became more completed (α‐crystal form) in the presence of PEG. Viscoelastic parameters such as zero‐shear viscosity and relaxation time as an indication of elasticity were obtained. The results revealed enhanced polymer chain mobility and disentanglement ought to plasticizing effect of PEG. The critical content of PEG about 20–30 wt % at which the solid–liquid phase separation occurred was in good agreement with the viscoelastic properties. Hence, more than 20% PEG the elasticity diminished and the melt strength became zero. The interfacial tension of the PLA and PEG estimated through the rheological and morphological parameters evidenced the good miscibility of PLA/PEG system at the melt electrospinnig temperature. While the high viscose samples (η0 > 1800 Pa/s) PLA and PLA/PEG (95/5) were not spinnable at the spinning temperature of 180 °C, blends containing 10–30% PEG were easily spun. The finest and continuous fiber mats were obtained by electrospinning of PLA/PEG (80/20) blend (df = 4.8 ± 0.8 μm). More than the critical concentration of PEG (Φ > 30%), lacking the elasticity suppressed the melt electro‐spinnability of PLA/PEG. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44120.  相似文献   

3.
The dynamic viscoelastic properties of poly(vinyl alcohol) (PVA)/H2O solutions with concentrations of 10 to 25 wt % have been characterized by controlled‐stress rheometry at 30°C. Parameters relating to the linear and nonlinear viscoelasticities include complex viscosity (η*), storage modulus (G′), loss tangent (tan δ), relaxation time (λ), thixotropy, and creep. Change curves of η*, G′, tanδ, and λ with frequency (ω) have been obtained for the PVA/H2O solutions. Creep and recovery testing yielded compliance (J′) curves with loading and unloading. Shear stress versus rate profiles of the PVA solutions have been obtained through thixotropic measurements. The PVA concentration has been found to have a profound influence on the rheological properties of the aqueous solutions. Four aqueous solutions of 10, 15, 20, and 25 wt % PVA at 30°C exhibited shear‐thinning and showed different transition behaviors of η* and G′ with frequency, and different degrees of creep under constant stress to recovery with time. The 10 wt % PVA solution was viscous and displayed the lowest η* and G′; the 25 wt % PVA solution was viscoelastic and displayed the highest η* and G′; the 15 and 20 wt % PVA solutions showed η* and G′ values and creep to recovery behaviors intermediate between those of the 10 wt % and 25 wt % PVA solutions. The different rheological properties of these PVA/H2O solutions are considered to correlate with interchain hydrogen bonds and shear‐induced orientation in the solutions. Shearing is able to break the intrachain and interchain hydrogen bonds, and, at the same time, the orientation creates new interchain hydrogen bonding. The reorganization of hydrogen‐bonding mode contributes to the transitions of the macroscopic viscoelasticity with frequency. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Miscibility of 30 phr loaded black-filled (N110) blends of polyethylene-vinyl acetate (EVAc, VAc content 28%) and polychloroprene (CR) are investigated through shear and dynamic deformations. Both shear (ηa) and dynamic elongational (η′E) viscosities are conducive to their miscibility as both show positive deviation for all blends, though dynamic out-of-phase (η″E) viscosity shows negative-positive deviation. Both ηa and η′E follow the power law relationship with shear rate (γ˙wa) and frequency (ω), respectively. Both storage (E′) and loss (E″) modulii increases with frequency. The higher dissipative energy at around 11 Hz may be due to its syncronization with molecular vibrations of the polymer segments. The effect of rheological parameters like strain rate and temperature on the relative change in shear (RVS) and dynamic elongational (RVD) viscosities is reported for the variation of blend composition with 30 phr loaded black-filled compounds. The variation of both RVS and RVD follows a third order polynomial equation with carbon black loading in 50/50 EVAc/CR blend; all the polynomial constants are function of temperature and strain rate. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
A series of poly(methyl methacrylate) (PMMA) blends with rigid ladderlike polyphenylsilsesquioxane (PPSQ) were prepared at weight ratios of 100/0, 95/5, 90/10, 85/15, and 80/20 by solution casting and then hot‐pressing. Their rheological properties have been studied under both dynamic shear and uniaxial elongation conditions. Their rheological properties depend on the compositions. The storage modulus, G′, loss modulus, G″, and dynamic shear viscosity, η*, of the PMMA/PPSQ 95/5 blend were slightly lower than those of pure PMMA. However, the values of G′, G″, and η* for the other PMMA/PPSQ blends are higher than those of PMMA. The G′ values increase with an increase in PPSQ content from 5% through 15% PPSQ at low frequencies and then drop as the PPSQ content increases to 20%. Uniaxial elongational viscosity (ηE) data demonstrate that PMMA/PPSQ blends exhibit slightly weaker (5% PPSQ) and much weaker (10% PPSQ) strain‐hardening than PMMA. In contrast, the PMMA/PPSQ 85/15 blend shows strain‐softening. Neither strain‐hardening nor strain‐softening was observed in the 80/20 blend. The special rheological properties for the 95/5 blend is probably due to a decrease in PMMA entanglements brought by the specific PMMA–PPSQ interactions. Rheological properties of PMMA/PPSQ blends with higher PPSQ content (≥10%) are mainly affected by formation of hard PPSQ particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 352–359, 2007  相似文献   

6.
The dynamic rheological properties of poly(etherimide)/poly(etheretherketone)/liquid crystalline polymer (LCP) ternary blends were measured in order to correlate these properties with the morphology obtained after extrusion. The viscosity radio, ηdm, where ηd = disperse phase viscosity and ηm = matrix viscosity, had to be redefined. Below 50 wt% LCP, ηd = ηLCP, ηm = ηPEEK+PEI and ηdm < 1. Above 50 wt% LCP, ηd = ηPEEK+PEI, ηm = ηLCP and ηdm > 1. Fibrillar morphologies were obtained in both cases, except below a concentration of 20 wt% LCP. At low concentrations of LCP the ternary blends had lower viscosities than the component polymers, showing a flow promotion effect of the LCP on the PEI- and PEEK-rich phases.  相似文献   

7.
Polystyrene (PS) blends with rigid ladderlike polyphenylsilsesquioxane (PPSQ) were prepared by solution casting followed by hot pressing. The rheological properties of these blends were studied under dynamic shear and uniaxial elongation conditions. The loss modulus (G″) and dynamic shear viscosity (η*) of the 95/5 PP/PPSQ blend were slightly lower than those of pure PS at low frequencies (≤10?2 rad/s). However, the storage modulus (G′), G″, and η* of the other blends (90/10, 85/15, and 80/20) were higher than those of pure PS and increased with PPSQ content. The ηE data demonstrated that PS/PPSQ blends exhibited slightly weaker (5% PPSQ) or much weaker (10% PPSQ) strain hardening than PS. In contrast, the 85/15 and 80/20 PP/PPSQ blends showed strain softening, and the extent of strain softening increased with PPSQ content. PS entanglements might have been reduced by the specific interactions between PS and PPSQ, which locally ordered some PS molecules in the 95/5 blend sample, because most of the PPSQ might have been well dispersed in the PS continuous phase, and only a few small PPSQ particles (~1.3 μm) were formed because of good miscibility. However, at high PPSQ contents (≥10%), many larger hard PPSQ particles were formed, which acted as fillers during the rheological measurements. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 706–713, 2005  相似文献   

8.
The rheological behavior of blends of poly(styrene-co-acrylonitrile) (SAN) and poly(ε-caprolactone) (PCL) was investigated, using a cone-and-plate rheometer. For the study, blends of various compositions were prepared by melt blending using a twin-screw compounding machine. The rheological properties measured were shear stress (σ12), viscosity (η), and first normal stress difference (N1) as functions of shear rate (γ) in steady shearing flow, and dynamic storage modulus (G′) and loss modulus (G″) as functions of angular frequency (ω) in oscillatory shearing flow, at various temperatures. It has been found that logarithmic plots of N1 versus σ12, and logarithmic plots of G′ versus G″, become virtually independent of temperature but vary regularly with blend composition, and that the zero-shear viscosity of the blends, (ηo)blend, follows the relationship, 1/log(ηo)blend = wA/log η0A + wB/log η0B, where η0A and η0B are the zero-shear viscosities of components A and B, respectively, and wA and wB are the weight fractions of components A and B, respectively. The physical implications of the relationship found are discussed.  相似文献   

9.
The melt apparent shear viscosity (ηa) of polypropylene (PP) composites filled with aluminum hydroxide [Al(OH)3] and magnesium hydroxide [Mg(OH)2] was measured by means of a capillary rheometer under experimental conditions of temperature ranging from 180 to 200°C and apparent shear rate varying from 10 to 2 × 103 s−1, to identify the effects of the filler particle content and size on the melt viscosity. The results showed that the melt shear flow of the composites obeyed the power law and presented pseudoplastic behavior. The dependence of ηa on temperature was consistent with the Arrhenius equation. The sensitivity of ηa for the composite melts to temperature was greater than that of the unfilled PP, and weakened with increasing apparent shear rate. The ηa increased linearly with an increase of the weigh fraction of the flame retardant, especially in the low apparent shear rate region. The ηa of the composites decreased slightly with an increase of particle size of flame retardant. Moreover, the variation for the ηa with particle size of flame retardant was much less than with apparent shear rate under these test conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The objectives of this study are to investigate the effect of silica nanoparticles on the morphology and rheological behavior of immiscible linear low‐density polyethylene/poly(lactic acid) (LLDPE/PLA) blends. Melt blending method is applied to prepare the blends and their nanocomposites. Scanning electron microscope and parallel plate rheometer were used to investigate morphology and rheological behavior of the blend nanocomposites. Scanning electron microscope results demonstrated a significant change in morphology behavior by incorporation of silica nanoparticles. A significant reduction in the PLA droplet for LLDPE/PLA (75/25) with 8 wt % silica was observed. The rheological studies illustrated that for all samples storage modulus and complex viscosity of blend nanocomposites are higher than neat blends. Finally, melt rigidity of blend nanocomposites was estimated by measurement of rheological properties using a rotational rheometer through small amplitude oscillatory shear experiments. As a result, through the shear data, a high value quantity as a criteria for melt rigidity is obtained for the LLDPE/PLA (75/25) with 8 wt % silica in comparing to the other samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45526.  相似文献   

11.
This paper deals with the development of the morphology in polyethylene glycol (PEG) and polyamide 66 (PA66) immiscible blends exhibiting an extremely low viscosity ratio (ηPEG/ηPA66=3-4×10-5). These materials were obtained by melt mixing, under different operating conditions, using a twin-screw batch-type DSM mini-extruder.Scanning electron microscopy, followed by quantitative image analysis was used to determine PEG particles size distribution (PSD) as a function of blends composition and screw rotation speed. Experiments carried out with two mixing time (5 and 10 min) showed no significant difference of PSD. So, to avoid thermal degradation of the products, the mixing time was set up at 5 min for all experiments. The influence of PEG concentration and screw rotation speed on PSD appeared to be similar to that obtained in a previous study for the same blends elaborated in a Haake internal mixer. The results clearly showed that the average particle diameters decreased as screw rotation speed increased and as PEG concentration decreased. However, this decrease is less important using the twin-screw batch-type mini-extruder with which the particle sizes are smaller. The particles sizes were then correlated to blend composition, shear rate and viscosity ratio owing to an extension of Serpe's model. The unknown parameters of the corresponding model were estimated on the basis of experimental data. This enabled then to predict with a good precision the influence of the process operating conditions on the morphology of the dispersed phase.  相似文献   

12.
Properties modification by blending polymers has been an area of immense interest. In this work, rheological and mechanical properties of poly(lactic acid)/polystyrene (PLA/PS) blends were investigated. PLA/PS blends in different ratios were prepared using a laboratory scale single screw extruder to obtain (3 mm) granules. Rheological properties were studied using a capillary rheometer and the Bagley’s correction was performed. True shear rate (γ r ), true shear stress (τ r ), and true viscosity (η r ) were determined, the relationship between true viscosity and (1/T) was studied for PLA70 blend and the flow activation energy at a constant shear stress (E τ ) and a constant shear rate (E γ ) was determined. The mechanical property measurements were performed at room temperature. Stress at break and strain at break were determined. The results showed that PLA/PS blend exhibited a typical shear-thinning behavior over the range of the studied shear rates, and the viscosity of the blend decreased with increasing PLA content. Also it was found that no equal-viscosity temperature exists between PLA and PS. The mechanical results showed immiscibility between PLA and PS in the blend.  相似文献   

13.
To improve the crystallization ability of poly(lactic acid) (PLA), a novel nucleating agent with a benzoyl hydrazine compound was used in this study. The crystallization behaviors of PLA/talc and PLA/bibenzoylhydrazinepropane (BBP) with or without poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry (DSC) and polarized optical microscopy. The DSC curves showed that the crystallization temperature and crystallinity of PLA/BBP (PBBP) was higher than that of PLA/talc. With the addition of PEG, a synergistic effect was found. According to the results of nonisothermal crystallization kinetics, the values of F(T) of PBBP0.5PEG5 were usually smaller than those of PTa3PEG5, so the nucleation efficiency of BBP was much better than that of talc. From a polarized optical microscopy photo, it was easy to determine that the nucleation density of BBP was higher than that of PTa3PEG5, and the spherulitic diameter increased linearly with the crystallization time no matter the impingements. The spherulitic growth rate of PBBP0.5PEG5 was faster than that of PTa3PEG5, and the induction time of PBBP0.5PEG5 was the shortest among all of the samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41367.  相似文献   

14.
Steady‐shear measurements of suspensions of carbon blacks (CB) in polystyrene (PS)/di‐(butyl phthalate) (DBP) solution were investigated as a function of volume fraction (?) of CB to clarify the effect of the primary particle size and the structure of CB aggregates on the rheological properties. The suspensions show a typical shear‐thinning behavior in the range of a shear rate studied. The Casson model was applied to evaluate the viscosity at infinite of shear rate η and the yield stress σy for the suspensions. Relative viscosity ηm, (ηm: medium viscosity) thus obtained was compared to the high‐frequency viscosity for the ideal hard‐sphere silica suspensions to evaluate the effective volume fraction ?eff of CB aggregates. The ?eff value was larger for the higher‐structure CB with higher DBP absorption value, irrespective of the primary particle size. The yield stress σy had almost the same ?eff dependence for neutral furnace CB/(PS/DBP) suspensions, although it was larger for acetylene black (AcB)/(PS/DBP) suspensions. These results demonstrated that the effective volume fraction is the most important quantity to characterize the CB aggregates on the rheological properties. It was also found that the correction of the medium viscosity changes due to polymer adsorption on the CB surface is important since neutral furnace CB adsorbs PS polymers but AcB hardly adsorbs PS polymers in the solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The steady shear viscosity (ηs), the steady first normal stress coefficient (Ψ1), the steady second normal stress coefficient (Ψ2), and extensional viscosity (ηe) are four important parameters for polymer melts during polymer processing. In this article, we propose a stress and rate-dependent function to describe creation and destruction of polymer junctions. Moreover, we also introduce a movement expression to describe nonaffine movement of network junctions. Based on network theory, a nonaffine single-mode rheological model is presented for the steady flow of polymeric melts, and the equations of ηs, Ψ1, Ψ2, and ηe are derived from the model accordingly. Furthermore the dependences of ηs and ηe on model parameters are discussed for the model. Without a complex statistical simulation, the single-mode model with four parameters yields good quantitative predictions of the steady shear and extensional flows for two low density polyethylene melts reported from previous literature in very wide range of deformation rates. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
17.
The rheological behaviors of semi‐aromatic transparent polyamide (SATPA) melt are investigated using a capillary rheometer. The effects of shear rate, shear stress, and temperature on the apparent viscosity ηa of SATPA are discussed. A correlation of non‐Newtonian index with temperature is obtained. The results show the shear thinning of SATPA; meanwhile ηa decreases with increasing temperature and shear rate, and the viscous flow activation energy is further obtained from temperature dependence of the samples. It was concluded that the apparent viscosity ηa is sensitive to temperature at lower shear rate owing to the higher viscous flow activation energy; on the contrary, the influence of temperature effect on the apparent viscosity becomes minor at higher shear rate due to the lower viscous flow activation energy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1586–1589, 2005  相似文献   

18.
The liquid crystalline polymer (LCP) and polyethylene terephthalate (PET) were blended in an elastic melt extruder to make samples having 20, 40, 60, 80, and 100 wt % of LCP. Morphology of these samples was studied using scanning electron microscopy. The steady state shear viscosity (η), dynamic complex viscosity (η*) and first normal stress difference (N1) were evaluated and compared at two temperatures: 265°C, at which LCP was in solid state, and 285°C, at which LCP was in molten state. The PET was in molten state at both the temperatures. The shear viscosity of the studied blends displayed its dependence on composition and shear rate. A maxima was observed in viscosity versus composition plot corresponding to 80/20 LCP/PET blend. The N1 increased with LCP loading in PET and with the increased asymmetry of LCP droplets. The N1 also varied with the shear stress in two stages; the first stage demonstrated elastic deformation, whereas second stage displayed dominant plastic deformation of LCP droplets. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2212–2218, 2007  相似文献   

19.
Synthesis of polyurethane acrylate (PUA) and preparation of the UV‐cured pressure‐sensitive adhesives (PSA) are reported. Molecular weight (Mw) (by gel permeation chromatography) and viscosity (η*) of PUA were measured. Characterization of PUA and PSA before and after UV‐curing was made by FTIR. Increase of the hydroxyls from hydrogenated castor oil/hydroxyls from dimer‐based polyester diol (OHHCO/OHDiol) ratio decreased the Mw and η* value of PUA. Dynamic viscoelastic properties (by dynamic rheological spectrometer) and performance of the UV‐cured PSA were also studied. Increase of the OHHCO/OHDiol ratio increased the storage modulus (G′), the loss modulus (G″), and complex viscosity (Eta*) of the UV‐cured PSA, which, in turn, enhanced holding power and shear adhesion failure temperature (SAFT) and yet decreased peeling strength. Substitution of OB for DBTDL depressed the Mw and η* value of PUA, while the G″ and Eta* values of the UV‐cured PSA were elevated, which, in turn, increased the holding power and SAFT and yet depressed the peeling strength. Elevation of the tackifying resin content depressed the G′, G″, and Eta* values of the cured PSA and yet increased glass transition temperatures (Tg) of PSA, measured by differential scanning calorimetry. Peeling strength of PSA elevated as increasing the tackifying resin, while the holding power and SAFT fell. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1814–1821, 2005  相似文献   

20.
A study of the dynamic complex and steady shear viscosity of isotactic polypropylene (iPP), ethylene–propylene diene terpolymer rubber (EPDM) and three different blends of both polymers are presented over a range of temperatures and frequencies. Moreover, the processability of these materials is studied through torque measurements during blend mixing. The results obtained show that the viscosity gradually increases with rubber content in the blend and decreases with both temperature and frequency. Plots of η″ versus η′ (Cole–Cole plots) show that the blend with the lower rubber content (25%), has a certain rheological compatibility with neat PP. Furthermore, torque curves measured during blend mixing confirm these results, demonstrating that the blend with 25% of elastomer has a similar behavior of iPP during processing. To analyze the morphological structure of the blends, a dynamic mechanical analysis of the solid state is also presented. It is observed that the blends have two distinct values of Tg close to the corresponding values of the pure polymers, confirming that this type of blends based on a semicrystalline polymer and an amorphous elastomer forms a two‐phase system with a limited degree of miscibility between both components. In addition, the polymer present with the higher concentration forms the continuous phase and controls the rheological properties of the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1–10, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号