首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 645 毫秒
1.
非轴对称扰动下含悬浮固粒旋转射流场稳定性研究   总被引:1,自引:0,他引:1  
考虑含有悬浮固粒的理想不可压旋转圆射流的运动方程,借助势流理论推得扰动增长率随径向波数变化的表达式,进而得到含悬浮固粒射流稳定性的修正瑞利稳定性准则,求出了非轴对称扰动下不同扰动阶数、固粒质量密度、固-气脉动速度比值、固-气脉动速度相位差、斯托克斯数时旋转射流的增长率曲线。然后根据修正瑞利稳定性准则分析给出了关于悬浮固粒的属性对旋转射流场稳定性影响的几个重要结论,为控制旋转射流场和后续发展提供了合理的依据。  相似文献   

2.
本文利用气固两相耦合模型,理论推导出大雷诺数下悬浮固粒分区存在的射流稳定性方程,通过数值计算得到了固粒存在不同流域时流场扰动放大因子曲线和波速曲线。进而,在分析所得稳定性曲线的基础上,得到了关于固粒充满全流场、存在于射流区及存在于非射流区对流场中扰动增长及扰动传播影响的重要结论。这些结论对气固两相射流场的发展的认识和工程实际中实施对气固两相射流场的人工控制有指导意义。  相似文献   

3.
本文提出了气固两相流动的湍流扩展数学模型,本模型用k-ε双方程模型求解气相湍流场,并根据气流脉动的频谱、能谱曲线提出了随机富工级数来模拟气相脉动速度,用拉氏方法描述颗粒的运动,故称为脉动频谱随机颗粒轨道模型。本文还给出了本模型在气固多相射流和流化床内应用的实例。  相似文献   

4.
吕明  宁智  阎凯 《力学学报》2018,50(3):561-569
液体射流热稳定性研究是对射流稳定性问题的更深层次的探讨,可以进一步加深对液体射流分裂与雾化机理的认识,具有重要的学术意义和工程应用价值. 基于射流稳定性理论,在同时考虑射流周围气体旋转、射流和周围气体可压缩性以及射流液体中含空化气泡的条件下,建立了描述可压缩旋转气体中超空化射流热稳定性的数学模型,并对数学模型及其求解方法进行了验证分析;在此基础上,分析了液体射流表面与周围气体间温差及射流内部温度梯度同时作用下对射流稳定性的影响;并进一步探讨了超空化射流的热稳定性. 结果表明,射流表面扰动波的最大扰动增长率、最不稳定频率以及最大扰动波数皆随气液温差的增大呈近似线性增大趋势;射流内部温度梯度的存在使得气液温差对射流的失稳作用更加显著;射流内部温度梯度会抑制超空化对射流稳定性的影响,但气液温差会在一定程度上促进超空化对射流的失稳作用.   相似文献   

5.
阎凯  宁智  吕明 《计算力学学报》2012,29(6):893-900
利用线性稳定性理论进行了射流液体粘性对圆环旋转液膜射流稳定性影响的研究,推导出了三维扰动下具有固体旋涡型速度分布的圆环旋转粘性液膜射流的色散方程;在此基础上进行了类反对称模式与类对称模式下的圆环旋转粘性液膜射流的三维不稳定性分析。研究结果表明,在类反对称模式下,液体粘性超过一定值后,射流最大扰动增长率随液体粘性的增加而迅速减小;轴对称模态的射流特征频率产生一个突降变化;随液体粘性增加,轴对称模态不稳定波数范围减小,非轴对称模态不稳定波数范围呈现出先减小后增大趋势。在类对称模式下,液体粘性对射流最大扰动增长率的影响主要体现在对非轴对称模态的影响上;液体粘性只在粘性较大时才会对非轴对称模态射流特征频率产生一定影响;液体粘性超过一定值后,轴对称模态与非轴对称模态的不稳定波数范围都会快速下降。  相似文献   

6.
采用大涡模拟方法数值模拟了展向椭圆喷嘴的湍流横向射流,对其大尺度结构的时空演化和湍流脉动速度场的时间序列分析、频谱分析、PDF分析以及时、空截面上的统计平均特性进行分析.结果表明,在射流出口附近的下游核心区中速度脉动剧烈,显现出明显的湍流特征.除了三维涡环脱落、扭曲、变形、摆动所对应频率之外,还存在很宽的湍流基频,它与在喷嘴出口附近产生的三维涡环的时空演化过程密切相关.由于展向椭圆喷嘴的湍流横向射流中的三维涡环快速脱落和强相互作用导致射流尾迹中的强湍流脉动,展向椭圆喷嘴湍流横向射流的PDF空间演化特征结构复杂.在射流核心区的湍流偏应力变化平缓,其统计平均值分布接近左右对称.展向椭圆喷嘴的湍流横向射流脉动速度场具有极为复杂的统计行为,与流向椭圆喷嘴相比具有更好的掺混能力.  相似文献   

7.
旋流燃烧室内湍流燃烧速度场的实验研究   总被引:5,自引:1,他引:5  
普勇  张健  周力行 《力学学报》2003,35(3):341-347
建立了采用分级进风方式的同轴射流旋流燃烧室实验装置,选用耐高温的氧化铝细粉作为示踪粒子,实现了用三维激光粒子动态分析仪(PDA)测量湍流旋流燃烧的热态瞬时速度场.在分级进风比率和旋流致不同的3组实验工况条件下,得到了气体时均轴向与切向速度、轴向与切向脉动速度均方根值和轴向—切向脉动速度二阶关联量的分布.  相似文献   

8.
液体射流热稳定性研究是对射流稳定性问题的更深层次的探讨,可以进一步加深对液体射流分裂与雾化机理的认识,具有重要的学术意义和工程应用价值.基于射流稳定性理论,在同时考虑射流周围气体旋转、射流和周围气体可压缩性以及射流液体中含空化气泡的条件下,建立了描述可压缩旋转气体中超空化射流热稳定性的数学模型,并对数学模型及其求解方法进行了验证分析;在此基础上,分析了液体射流表面与周围气体间温差及射流内部温度梯度同时作用下对射流稳定性的影响;并进一步探讨了超空化射流的热稳定性.结果表明,射流表面扰动波的最大扰动增长率、最不稳定频率以及最大扰动波数皆随气液温差的增大呈近似线性增大趋势;射流内部温度梯度的存在使得气液温差对射流的失稳作用更加显著;射流内部温度梯度会抑制超空化对射流稳定性的影响,但气液温差会在一定程度上促进超空化对射流的失稳作用.  相似文献   

9.
基于线性稳定性理论,建立了描述同轴旋转可压缩流动中超空化条件下液体射流稳定性的数学模型,并对数学模型及其求解方法进行了验证;在此基础上,对模型中考虑的射流及气体可压缩性、气体同轴旋转以及超空化等因素对射流稳定性的影响进行了分析. 分析结果表明,模型中考虑射流及气体的可压缩性后,与不考虑可压缩性相比,计算得到的射流稳定性明显变差,最小液滴直径减小,分裂液滴直径变化范围变宽,且小液滴数量增多. 气体的同轴旋转在轴对称与非轴对称扰动下对射流稳定性的影响完全相反;轴对称扰动时,气体旋转使射流稳定性增强,而非轴对称扰动时则正好相反;气体旋转有可能导致影响射流稳定性的扰动模式发生根本性变化. 超空化使射流稳定性变差;超空化程度较弱时,超空化使分裂液滴最小直径减小,分裂液滴直径变化范围增大;而超空化达到一定程度后,进一步提高超空化程度,分裂液滴最小直径几乎保持不变.  相似文献   

10.
气固两相混合层二维涡配对的数值研究   总被引:1,自引:0,他引:1  
采用双向耦合模型中的速度耦合模型,数值模拟了气固两相混合层中涡的配对、合并过程,文中采用拟谱方法对流场进行了直接数值模拟,用Lagrange模型跟踪固粒,结果发现,在双向耦合过程中Stokes数仍然是重要的参数,但不是唯一影响流场的参数,流场的发展还与固粒的体积浓度、固粒的相对密度以及固粒大小等因素有关。固粒抑制流场的发展,阻碍涡的配对、合并,加快了涡量的扩散;小St数的固粒仍然跟随流体运动,大St数的固粒趋向于低涡量区的趋势减弱。  相似文献   

11.
An annular liquid wall jet, or vortex tube, generated by helical injection inside a tube is studied experimentally as a possible means of fusion reactor shielding. The hollow confined vortex/swirling layer exhibits simultaneously all the complexities of swirling turbulence, free surface, droplet formation, bubble entrapment; all posing challenging diagnostic issues. The construction of flow apparatus and the choice of working liquid and seeding particles facilitate unimpeded optical access to the flow field. A split-screen, single-camera stereoscopic particle image velocimetry (SPIV) scheme is employed for flow field characterization. Image calibration and free surface identification issues are discussed. The interference in measurements of laser beam reflection at the interface are identified and discussed. Selected velocity measurements and turbulence statistics are presented at Re\uplambda=70 \hbox{Re}_{\uplambda}=70 (Re = 3500 based on mean layer thickness).  相似文献   

12.
A bounded vortex flow consists of an axisymmetric vortex that is confined top and bottom between two plates (the “confinement plate” and “impingement plate”, respectively) and surrounded laterally by a swirling annular slot jet. The bottom of the vortex terminates on the boundary layer along the impingement plate and the top of the vortex is drawn into a suction port positioned at the center of the confinement plate. The circumferential flow within the annular jet is important for supplying circulation to the central wall-normal vortex. This flow field is proposed as a method for mitigation of dust build-up on a surface, where the vortex–jet combination supplements the more traditional vacuum port by enhancing the surface shear stress and related particle transport rate. The paper reports on a computational study of the velocity field and particle transport by a bounded vortex flow. Fluid flow computations are performed using a finite-volume approach for an incompressible fluid and particle transport is simulated using a discrete-element method. Computations are performed for different values of two dimensionless parameters – the ratio of the plate separation distance and the average radial location of the jet inlet (the dimensionless confinement height) and the ratio of flow rate withdrawn at the suction outlet and that injected by the jet (the flow rate ratio). For small values of the flow rate ratio, the impinging jet streamlines pass down to the boundary layer along the bottom surface and then travel up the vortex core. By contrast, for large values of flow rate ratio, the annular jet is quickly entrained into the suction outlet and no wall-normal vortex is formed. Particles are observed to roll along the impingement surface in a direction determined by the fluid shear stress lines. Particles roll outward when they lie beyond a separatrix curve of the surface shear stress lines, where particles within this separatrix curve roll inward, piling up at the center of the flow field. A toroidal vortex ring forms for the small confinement height case with flow rate ratio equal to unity, which yields double separatrix curves in the shear stress lines. The inward rolling particles intermittently lift up due to collision forces and burst away from the impingement surface, eventually to become entrained into the flow out the suction port or resettling back onto the impingement surface.  相似文献   

13.
The interaction between turbulent jets, both swirling and nonswirling, and the ambient medium is studied on the basis of the results of measurements and numerical simulation. It is shown that the turbulent flow and the swirl give rise to induced ejection flow toward the jet. The mechanism of the jet action on the ambient medium is connected with a decrease in the static pressure in the jet, which, in turn, is due to either the flow swirl or the fluctuating flow in the mixing layer, when the static pressure reduces owing to the presence of velocity fluctuations. The former rarefaction mechanism is predominant in swirling jets and the latter predominates in jets without swirling. It is shown that the ambient medium inflow into the jet due to the rarefaction is independent in nature of the mechanism of the lowered pressure generation and that it is the kinetic energy of the jet that is the energy source for the induced flow.  相似文献   

14.
The stability of rotating horizontal-shear flows is investigated within the framework of the linear approximation. The shear flow perturbations are divided into three classes (symmetric and two- and three-dimensional) and sufficient conditions of stability are obtained for each class. The perturbation dynamics in a flow with constant horizontal shear are described and the algebraic instability of the flow with respect to three-dimensional perturbations is detected. It is shown that the symmetric perturbations may be localized (trapped) inside the shear layer. The problem of finding the growth rates and frequencies of the trapped waves is reduced to a quantum-mechanical Schrödinger equation. Exact solutions are obtained for a “triangular” jet and hyperbolic shear.  相似文献   

15.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

16.
The study of an under‐expanded supersonic jet impinging on a flat plate by using large‐eddy simulation is reported. A third‐order upwind compact difference and a fourth‐order symmetric compact scheme are employed to discretize the nondimensional axisymmetric compressible Favre‐filtered Navier–Stokes equations in space, whereas the third‐order Runge–Kutta method with the total variation diminishing property is adopted to deal with the temporal discretization. The numerical simulation successfully captures the shock wave and vortex structures with different scales in the flow field. Waves with high and low frequencies traveling forward and reflecting back, and sound sources in different locations can be observed. By comparison with the frequency of the impinging tone from the experiment, it can be deduced that the change of pressure and swirling strength in the shear layer, pressure change on the impinging plate, and vortex merging in the jet shear layer are interdependent with the impinging tone. The effects of nozzle lip thickness on the impinging jet flow field have been investigated. The results show that the values of pressure fluctuation and vortex swirling strength in the shear layer near the nozzle have an extremum with the variation of the nozzle lip thickness. The results provide a theoretical foundation for the design of supersonic nozzles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Large-scale vortical structures and associated mixing in methane/air swirling coaxial jets are actively controlled by manipulating the outer shear layer of the outer swirling coaxial jet with miniature flap actuators. In order to investigate the control mechanisms, stereoscopic particle image verocimetry (stereo-PIV) and plannar laser-induced fluorescence (PLIF) techniques are employed. It is found that intense vortex rings are produced in the outer shear layer in phase with the periodic flap motion regardless of the swirl number examined. The vortical structures in the inner shear layer, however, are strongly dependent on the swirl rate. This is because the central methane jet is accelerated by the negative axial pressure gradient, of which strength is determined by the swirl. As a result, the inner vortex formation is significantly suppressed at a higher swirl rate. On the other hand, at a relatively low swirl rate, the inner vortices are shed continuously and the methane jet is pinched off. This particular mode promotes the mixing of methane and air, so that the flammable mixture can be formed at an earlier stage of the jet flow development. In addition, the evolution of secondary streamwise vortices is prompted by the combination of the periodic vortex ring shedding and the swirl. They also contribute to the mixing enhancement in the downstream region.  相似文献   

18.
The dual-jet flow generated by a plane wall jet and a parallel offset jet at an offset ratio of d/w = 1.0 has been investigated using Particle Image Velocimetry (PIV). The particle images are captured, processed, and subsequently used to characterize the flow in terms of the 2D velocity and vorticity distributions. Statistical characteristics of the flow are obtained through ensemble averaging of 360 instantaneous velocity fields. Also presented is a time series of instantaneous flow fields to illustrate the dynamic interaction between the two jets. Results reveal that the near field of the flow is characterized by a periodic large-scale Karman-like vortex shedding similar to what would be expected in the wake of a bluff body. The existence of the Karman-like vortices results in periodic interactions between the two jets; in addition, these vortices produce noticeable impact on the jet outer layers, i.e., the free shear layer of the offset jet and the wall boundary layer of the wall jet. A schematic of vortex/shear layer interaction is proposed to illustrate the flow pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号