首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The need for large, room-temperature gamma-ray spectrometers to be fabricated from a single crystalline section of a cadmium zinc telluride (CZT) boule was recently met by progress in crystal growth of high-resistivity material. The characterization of such large crystals provides us with an opportunity to better understand the detector physics and apply characterization techniques, which were difficult to implement and analyze on smaller crystals. In this study, metal-semiconductor-metal, planar-CZT detectors were fabricated from large (approximately 9 × 9 × 6 mm3), CZT single crystals. We have investigated the relationship between the results of the electric-field mapping via Pockels effect, photoconductivity data, and detector performance. Changes in the surface recombination and device characteristics showing departure from symmetry are caused and revealed by variations in the surface preparation.  相似文献   

2.
Device simulations of (1) the laterally contacted-unipolar-nuclear detector (LUND), (2) the SpectrumPlus, (3) and the coplanar grid made of Cd0.9Zn0.1Te (CZT) were performed for 137Cs irradiation by 662.15 keV gamma-rays. Realistic and controlled simulations of the gamma-ray interactions with the CZT material were done using the MCNP4B2 Monte Carlo program, and the detector responses were simulated using the Sandia three-dimensional multi-electrode simulation program (SandTMSP). The simulations were done for the best and the worst expected carrier mobilities and lifetimes of currently commercially available CZT materials for radiation detector applications. For the simulated unipolar devices, the active device volumes were relatively large and the energy resolutions were fairly good, but these performance characteristics were found to be very sensitive to the materials properties. The internal electric fields, the weighting potentials, and the charge induced efficiency maps were calculated to give insights into the operation of these devices.  相似文献   

3.
4.
The material showing the greatest promise today for production of large-volume gamma-ray spectrometers operable at room temperature is cadmium zinc telluride (CZT). Unfortunately, because of deficiencies in the quality of the present material, high-resolution CZT spectrometers have thus far been limited to relatively small dimensions, which makes them inefficient at detecting high photon energies and ineffective for weak radiation signals except in near proximity. To exploit CZT fully, it will be necessary to make substantial improvements in the material quality. Improving the material involves advances in the crystallinity, purity, carrier lifetimes, and control of the electrical compensation mechanism. A more detailed understanding of the underlying material problems limiting the performance of CZT gamma-ray detectors is required; otherwise, problems with supply, delivery times, and unit cost of large-volume (>5 cm3 active volume) CZT spectrometers are expected to continue. A variety of analytical and numerical techniques have been employed to quantify crystallinity, strain, impurities, compositional and stoichiometric variations, bulk and surface defect states, carrier mobilities and lifetimes, electric field distributions, and surface passivation. Data from these measurements were correlated with spatial maps of the gamma-ray and alpha particle spectroscopic response, and feedback on the effectiveness of crystal growth and detector fabrication procedures has been generated. The results of several of these analytical techniques will be presented in this paper.  相似文献   

5.
采用布里奇曼法生长的CdZnTe(CZT)单晶,制成室温核辐射像素探测器.首先通过红外透过显微(IRTM)成像、电阻率测量以及单元探测器能谱响应测试等手段,综合评定了探测器用CZT晶体的质量,结果表明,晶片富Te相密度为28.43 mm-2且尺寸分布较均匀,电阻率为1010 Ω·cm;电子迁移率寿命积为1.07×10-...  相似文献   

6.
In this paper, we report the results of capacitance-voltage measurements conducted on several metal-insulator semiconductor (MIS) capacitors in which HgCdTe surfaces are treated with various surface etching and oxidation processes. CdZnTe passivation layers were deposited on HgCdTe surfaces by thermal evaporation after the surfaces were etched with 0.5?2.0% bromine in methanol solution, or thin oxide layers (tox ~ few ten Å) were grown on the surfaces, in order to investigate effects of the surface treatments on the electrical properties of the surfaces, as determined from capacitance-voltage (C-V) measurements at 80K and 1 MHz. A negative flat band voltage has been observed for MIS capacitors fabricated after etching of HgCdTe surfaces with bromine in methanol solutions, which is reported to make the surface Te-rich. It is inferred that residual Te on the surface is a positive charge, Te4+. C-V characteristics for MIS capacitors fabricated on oxide surfaces grown by air-exposure and electrolytic process have shown large hysteresis effects, from which it is inferred that imperfect and electrically active oxide compounds and HgTe particles near the surface become slow interface states.  相似文献   

7.
碲镉汞(Hgl-xCdxTe,MCT)材料的表面钝化被认为是光导和光伏探测器制备中的关键步骤之一。实用的MCT器件需要稳定且可重复生产的钝化表面和符合器件性能要求的界面及表面势。通过对近年来的部分英语文献进行归纳分析,介绍了MCT表面钝化研究的进展。描述了MCT钝化的基本概念。讨论了部分MCT钝化膜的生长方法、界面性质和参数。  相似文献   

8.
The surface recombination velocity in n-type heteroepitaxial GaN(0001) is shown to decrease dramatically when the surface is chemically treated with aqueous and alcoholic solutions of inorganic sulfides, such as ammonium or sodium sulfide (NH4)2Sx and Na2S). The room-temperature excitonic photoluminescence (PL) intensity increases by a factor of four to six after treatment, and improvements persist for at least seven months in room air. Various other chemicals commonly used in device processing are investigated and shown to change the PL intensity by factors ranging from 0.7 to 2.5, buffered oxide etching being the most beneficial. Schottky barrier diodes using gold as the contact metal are fabricated using a sulfide treatment prior to evaporation. The barrier height from capacitance-voltage measurements is as high as 1.63 ± 0.07 V, the highest value ever achieved on n-GaN. This result is evidence that the effect of surface states on the Fermi level has been substantially reduced by the treatment.  相似文献   

9.
KOH各向异性腐蚀中预处理对硅表面粗糙度的影响   总被引:3,自引:0,他引:3  
通过实验研究表明:不同预处理方法对KOH腐蚀后硅片表面粗糙度的影响不同,分别用35℃的BOE(7:1氟化铵腐蚀液)、常温BOE、10:1 HF、50:1 HF含HF成分的腐蚀液对硅片进行预处理,再和未做预处理的硅片在同等条件下进行KOH腐蚀,实验结果发现预处理后硅片表面粗糙度比未做处理的硅片表面粗糙度增加约1 nm左右,即经过含HF成分的腐蚀液预处理后的硅片再进行KOH腐蚀,其表面粗糙度将变差.  相似文献   

10.
A silicon wafer with a silicon nitride layer deposited by low pressure chemical vapour deposition may be subjected to high‐temperature treatments without adversely affecting the electronic properties of the silicon on the condition that a thin oxide is present under the nitride. After high‐temperature treatments there is an apparent degradation in effective lifetime, probably due to a loss of hydrogen from the silicon/oxide interface. Effective lifetimes can be completely recovered by thermal treatment in a hydrogen‐containing ambient. This work has useful applications for solar cells as many of the properties of these nitrides can be used to advantage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We report the electronic passivation of a silicon surface by iodine termination. The resulting surface recombination velocity on Si(100) is less than 1 cm/s which is better than that obtained in concentrated hydrofluoric acid (HF). We have produced a surface recombination velocity of 20 cm/s using bromine. We present a simple model for these phenomena of a surface coverage of Si-X where X is a monovalently bonded halogen atom. The effectiveness of the passivation by halogens is shown to be limited by the oxidation of halogens by dissolved oxygen in solution. We demonstrate the use of halogen:methanol solutions as an alternative to HF for the control of silicon surface chemistry.  相似文献   

12.
Charge transport characteristics of Cd0.95Mn0.05Te:In radiation detectors have been evaluated by combining time resolved current transient measurements with time of flight charge transient measurements.The shapes of the measured current pulses have been interpreted with respect to a concentration of net positive space-charge, which has resulted in an electric field gradient across the detector bulk.From the recorded current pulses the charge collection efficiency of the detector was found to approach 100%.From the evolution of the charge collection efficiency with applied bias,the electron mobility-lifetime product ofμnτn =(8.5±0.4)×10-4 cm2/V has been estimated.The electron transit time was determined using both transient current technique and time of flight measurements in the bias range of 100-1900 V.From the dependence of drift velocity on applied electric field the electron mobility was found to beμn =(718±55) cm2/(V·s) at room temperature.  相似文献   

13.
红外探测器处于太空或辐射环境会受到各种辐射粒子作用,其性能会发生衰减。本文主要分析了各种辐射效应对HgCdTe红外探测器性能影响机理。针对红外探测器复合钝化加固方法,ROIC环源环栅加固方法进行试验验证。辐照试验显示,加固后的红外探测器互联抗辐照读出电路,其抗总剂量、抗剂量率及抗中子辐射位移达到了比较好抗辐照效果。  相似文献   

14.
赝二元体系碲镉汞(Mercury Cadmium Telluride, HgxCd1-xTe)材料具有优异的光电特性,是制备高灵敏度红外探测器的最重要材料之一。为了获得性能优异的HgxCd1-xTe探测器及其组件,目前已经发展了各种HgxCd1-xTe材料制备技术和器件制作工艺。但在各种材料制备及器件应用过程中,HgxCd1-xTe表面均会受到环境和不良表面效应的影响,所以需要采用先进的钝化工艺对其表面电荷态进行处理,改善材料表面的电学物理特性,从而实现器件探测性能的提升。因此,HgxCd1-xTe薄膜表面钝化工艺对HgxCd1-xTe红外探测器的性能提升至关重要。总结和分析了近年来碲镉汞薄膜表面钝化层的生长方法。按照本源钝化和非本源钝化进行了分类总结和综述,分析了不同钝化方法的优缺点,并对未来碲镉汞薄膜钝化工艺进行了展望。  相似文献   

15.
Effects of excess tellurium on the properties of CdZnTe radiation detectors   总被引:2,自引:0,他引:2  
Room-temperature radiation detectors have been fabricated on high-resistivity, indium-doped Cd0.90Zn0.10Te crystals grown under different amounts of excess Te. The effects of the excess Te on the properties of the detectors are explained by a simple model using only three parameters: the density of Cd vacancies, the density of Te antisites (Te at Cd sites), and the deep level of doubly ionized Te antisites. The best detectors, which can resolve the low-energy Np-L and Te-K peaks as well as Cd and Te escape peaks of 241Am, are produced from crystals grown with 1.5% excess Te. The detectors fabricated from crystals grown without excess Te are unable to resolve any characteristic-radiation peaks of 241Am and 57Co. This result is explained by a model of networked p-type domains in an n-type matrix or vice versa, which is caused by the lack of sufficient deep-level Te antisites. Such conduction-type inhomogeneity causes massive electron and hole trapping. As for the detectors fabricated from Cd0.90Zn0.10Te crystals grown with 2% and 3% excess Te, they are able to resolve the 241Am 59.5-keV, 57Co 122-keV, and 57Co 136-keV radiation peaks. However, the full-width at half-maximum (FWHM) values of these peaks are broadened, especially the high-energy 57Co peaks. These phenomena are attributed to the hole and, possibly, electron trapping by Cd vacancies and Te antisites, respectively. The result of the analysis indicates that sufficient Te antisites and a low density of carrier traps in Cd0.90Zn0.10Te are essential for producing high-quality radiation detectors. In the analysis, it was discovered that most of the excess Te, on the order of 1–2 × 1020 cm−3, remain electrically inactive. A possible explanation for this phenomenon is that the excess Te atoms form neutral Te-antisite and Cd-vacancy complexes, such as TeCd·(VCd)2, during the post-growth cooling process.  相似文献   

16.
Aluminum oxide films can provide excellent surface passivation on both p‐type and n‐type surfaces of silicon wafers and solar cells. Even though radio frequency magnetron sputtering is capable of depositing aluminum oxide with concentrations of negative charges comparable to some of the other deposition methods, the surface passivation has not been as good. In this paper, we compare the composition and bonding of aluminum oxide deposited by thermal atomic layer deposition and sputtering, and find that the interfacial silicon oxide layer and hydrogen concentration can explain the differences in the surface passivation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The thermal ionization energies of traps and their types, whether electron or hole traps, were measured in commercial CdZnTe crystals for radiation detectors. The measurements were done between 20 and 400K using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliable results, indium ohmic contacts had to be used instead of gold Schottky contacts. For filling of the traps, photoexcitation was done at zero bias, at 20K, and at wavelengths which gave the maximum bulk photoexcitation. In agreement with theory, the TSC current was found to be on the order of times or even larger than the TEES current, where V is the applied bias in TSC and ΔT is the applied temperature difference in TEES. Large concentrations of hole traps at 0.1 and 0.6 eV were observed and a smaller concentration of electron traps at 0.4 eV was seen. The deep traps cause compensation in the material, which is desirable, but they also cause carrier trapping that degrades the spectral response of radiation detectors made from the material.  相似文献   

18.
Wensi Cai  Haiyun Li  Mengchao Li  Zhigang Zang 《半导体学报》2022,43(3):034102-1-034102-8
Solution-processed oxide semiconductors have been considered as a potential alternative to vacuum-based ones in printable electronics. However, despite spin-coated InZnO (IZO) thin-film transistors (TFTs) have shown a relatively high mobility, the lack of carrier suppressor and the high sensitivity to oxygen and water molecules in ambient air make them potentially suffer issues of poor stability. In this work, Al is used as the third cation doping element to study the effects on the electrical, optoelectronic, and physical properties of IZO TFTs. A hydrophobic self-assembled monolayer called octadecyltrimethoxysilane is introduced as the surface passivation layer, aiming to reduce the effects from air and understand the importance of top surface conditions in solution-processed, ultra-thin oxide TFTs. Owing to the reduced trap states within the film and at the top surface enabled by the doping and passivation, the optimized TFTs show an increased current on/off ratio, a reduced drain current hysteresis, and a significantly enhanced bias stress stability, compared with the untreated ones. By combining with high-capacitance AlOx, TFTs with a low operating voltage of 1.5 V, a current on/off ratio of > 104 and a mobility of 4.6 cm2/(V·s) are demonstrated, suggesting the promising features for future low-cost, low-power electronics.  相似文献   

19.
Atomic‐layer‐deposited aluminium oxide (Al2O3) is applied as rear‐surface‐passivating dielectric layer to passivated emitter and rear cell (PERC)‐type crystalline silicon (c‐Si) solar cells. The excellent passivation of low‐resistivity p‐type silicon by the negative‐charge‐dielectric Al2O3 is confirmed on the device level by an independently confirmed energy conversion efficiency of 20·6%. The best results are obtained for a stack consisting of a 30 nm Al2O3 film covered by a 200 nm plasma‐enhanced‐chemical‐vapour‐deposited silicon oxide (SiOx) layer, resulting in a rear surface recombination velocity (SRV) of 70 cm/s. Comparable results are obtained for a 130 nm single‐layer of Al2O3, resulting in a rear SRV of 90 cm/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
We report for the first time, a surface passivation technique for InP/In0.53Ga0.47As heterojunction bipolar transistors that is suitable for optoelectronic integrated circuits. The combination of buffered hydrofluoric acid with high temperature annealing of the surface causes significant increase of the gain at low input currents. Using this technique, transistors were integrated with photodetectors and other optoelectronic devices and had current gains as high as 400 even at nanoampere base currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号