首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a procedure to construct an artificial corneal epithelium from cryopreserved limbal stem cells (LSCs) for corneal transplantation. The LSCs were separated from limbal tissue of male goats. The primary LSCs were identified by flow cytometry and were expanded. They were examined for stem cell-relevant properties and cryopreserved in liquid nitrogen. Cryopreserved LSCs were thawed and then transplanted onto human amniotic membrane, framed on a nitrocellulose sheet, to construct corneal epithelium sheets. The artificial corneal epithelium was transplanted into the right eye of pathological models of total limbal stem cell deficiency (LSCD). Then, the effects of reconstruction were evaluated by clinical observation and histological examination. Polymerase chain reaction analysis was used to detect the SRY gene. The data showed that transplantation of cryopreserved LSCs, like fresh LSCs, successfully reconstructed damaged goat corneal surface gradually, but the SRY gene expression from male goat cells could only be detected in the first 2 months after transplantation. The therapeutic effect of the transplantation may be associated with the inhibition of inflammation-related angiogenesis after transplantation of cryopreserved LSCs. This study provides the first line of evidence that cryopreserved LSCs can be used for reconstruction of damaged corneas, presenting a remarkable potential source for transplantation in the treatment of corneal disorders.  相似文献   

2.

Background

Several methods to cultivate limbal epithelial stem cells (LESCs) in vitro with the support of feeder layers and different growth medium formulations have been established for several years. The initial green medium consists of various ingredients that exhibit a non-optimal level of biosafety, therefore, different modifications have been made to suit it to safe clinical applications. However, the question of which formulation is the most appropriate remains to be answered.

Aims

This study evaluated the outgrowth kinetics and stemness of cells cultured from human limbal explants with the aim of preserving LESC characteristics in the human-derived platelet-rich fibrin (HPRF)–conditioned medium with no feeder cell layer or carrier for the first time. The final composition of the cell culture system included only human-derived products without any xenobiotic or chemical substances to minimize the potential risk for human health, which will be useful for clinical purposes.

Methods

To test our hypothesis, limbal explants were incubated with either Dulbecco's Modified Eagle's Medium (DMEM)/F12-10% human serum (HS), human-derived amniotic membrane (HAM)-conditioned DMEM/F12-10% HS or HPRF-conditioned DMEM/F12-10% HS to determine whether outgrowth kinetics and stemness of cells show any differences among groups.

Results

The results showed that the HPRF-conditioned medium showed higher concentration levels of growth factors, which may be involved in the promotion of LESC expansion while preserving the stem cell characteristics. HPRF-conditioned medium had significantly superior capacity to enhance the cell growth rate, the stem/progenitor cell phenotype and the expressions of putative stem cell markers.

Conclusion

This novel xeno-feeder-chemical-free, completely human-derived and biologically safe culture system including HPRF and HS would be of interest to replace conventional cell culture strategies to meet safety requirements mandatory for clinical use in humans.  相似文献   

3.
Human Amniotic Epithelial Cells (hAEC) isolated from term placenta are a promising source for regenerative medicine. However, it has long been debated whether the hAEC population consists of heterogeneous or homogeneous cells. In a previous study, we investigated the characteristics of hAEC isolated from four different regions of the amniotic membrane finding significant heterogeneity. The aim of this study was to evaluate the hepatic differentiation capability of hAEC isolated from these four regions. Human term placentae were collected after caesarean section and hAEC were isolated from four regions of the amniotic membrane (R1-R4, according to their relative distance from the umbilical cord) and treated in hepatic differentiation conditions for 14 days. hAEC-derived hepatocyte-like cells showed marked differences in the expression of hepatic markers: R4 showed higher levels of Albumin and Hepatocyte Nuclear Factor (HNF) 4α whereas R1 expressed higher Cytochrome P450 enzymes, both at the gene and protein level. These preliminary results suggest that hAEC isolated from R1 and R4 of the amniotic membrane are more prone to hepatic differentiation. Therefore, the use of hAEC from a specific region of the amniotic membrane should be taken into consideration as it could have an impact on the outcome of therapeutic applications.  相似文献   

4.
The cornea is the clear tissue at the front of the eye which enables the transmission of light to the retina for normal vision. The surface of the cornea is composed of an epithelium which is renewed by stem cells located at the periphery of the cornea, a region known as the limbus. These limbal stem cells can become deficient as a result of various diseases of the eye's surface, resulting in the blinding disease of limbal stem cell deficiency. The treatment of this disease is often difficult and complex. In 1997, it was proposed that a small amount of limbal tissue containing limbal stem cells could be culture expanded and then transplanted. Since then various case reports and case series have been reported showing promising results. Here, we review the outcomes of this procedure over the past 13 years with the aim of highlighting the best culture and surgical techniques to date.  相似文献   

5.
Abstract Stem-cell-based therapies may offer treatments for a variety of intractable diseases. A fundamental goal in stem-cell biology concerns the characterization of diverse populations that exhibit different potentials, growth capabilities, and therapeutic utilities. We report the characterization of a stem-cell population isolated from tissue explants of rat amniotic membrane. Similar to mesenchymal stem cells, these amnion-derived stem cells (ADSCs) express the surface markers CD29 and CD90, but were negative for the lymphohematopoietic markers CD45 and CD11b. ADSCs exist in culture in a multidifferentiated state, expressing neuroectodermal (neurofilament-M), mesodermal (fibronectin), and endodermal (α-1-antitrypsin) genes. To assess plasticity, ADSCs were subjected to a number of culture conditions intended to encourage differentiation into neuroectodermal, mesodermal, and endodermal cell types. ADSCs cultured in a defined neural induction media assumed neuronal morphologies and up-regulated neural-specific genes. Under different conditions, ADSCs were capable of differentiating into presumptive bone and fat cells, indicated by the deposition of mineralized matrix and accumulated lipid droplets, respectively. Moreover, ADSCs cultured in media that promotes liver cell differentiation up-regulated liver-specific genes (albumin) and internalized low-density lipoprotein (LDL), consistent with a hepatocyte phenotype. To determine whether this observed plasticity reflects the presence of true stem cells within the population, we have derived individual clones from single cells. Clonal lines recapitulate the expression pattern of parental ADSC cultures and are multipotent. ADSCs have been cultured for 20 passages without losing their plasticity, suggesting long-term self-renewal. In sum, our data suggest that ADSCs and derived clonal lines are capable of long-term self-renewal and multidifferentiation, fulfilling all the criteria of a stem-cell population.  相似文献   

6.
Herein, we reconstructed a rabbit corneal epithelium on a lyophilized amniotic membrane (LAM) using a modified version of two Teflon rings (the Ahn’s supporter). We compared the corneal epithelial cells we had differentiated in vitro using air-liquid interface (6 days, 12 days) and submerged (6 days, 12 days) cultures and followed a six-day tilting dynamic air-liquid interface culture with a six-day tilting submerged culture. We characterized the reconstructed corneal epithelium using digital photography, histological imaging, and transmission electron microscopy. The reconstructed corneal epithelium created under air-liquid interface culture exhibited a healthier basal corneal epithelial layer than that created under submerged culture. The reconstructed corneal epithelium on the LAM that was produced using the tilting dymanic culture exhibited a healthy basal layer. We therefore proposed that tilting submerged culture not only supplied nutrients from the medium to the corneal epithelial cells on the LAM, but it also removed the horny layer in the upper part of the reconstructed corneal epithelium, presumably by mimicking the effects of blinking. This study demonstrated that corneal epithelium reconstruction on a LAM using a tilting submerged culture after a tilting air-liquid interface culture may be useful not only for allogeneic or autologous transplantation, but also for in vitro toxicological test kits.  相似文献   

7.
In search of markers for the stem cells of the corneal epithelium   总被引:5,自引:0,他引:5  
The anterior one-fifth of the human eye is called the cornea. It consists of several specialized cell types that work together to give the cornea its unique optical properties. As a result of its smooth surface and clarity, light entering the cornea focuses on the neural retina allowing images to come into focus in the optical centres of the brain. When the cornea is not smooth or clear, vision is impaired. The surface of the cornea consists of a stratified squamous epithelium that must be continuously renewed. The cells that make up this outer covering come from an adult stem cell population located at the corneal periphery at a site called the corneal limbus. While engaging in the search for surface markers for corneal epithelial stem cells, vision scientists have obtained a better understanding of the healthy ocular surface. In this review, we summarize the current state of knowledge of the ocular surface and its adult stem cells, and analyse data as they now exist regarding putative corneal epithelial stem cell markers.  相似文献   

8.
9.
利用天然生物诱导剂大鼠再生胰腺提取物(Rgenerating pancreatic extract,RPE)定向诱导人羊膜间充质干细胞(Human amniotic mesenchymal stem cells,hAMSCs)向胰岛素分泌细胞分化。切除大鼠60%胰腺刺激胰腺再生,而后制备RPE,以终浓度为20 mg/L的RPE诱导hAMSCs。实验通过形态学鉴定、双硫腙染色、免疫荧光分析、RT-PCR基因检测和高糖刺激胰岛素分泌等实验鉴定细胞诱导结果。实验结果显示P3代hAMSCs经RPE诱导后形态变化明显,诱导15 d后细胞呈簇状生长,经双硫腙染色可见棕红色细胞团;免疫荧光染色结果显示诱导细胞呈胰岛素阳性表达;RT-PCR实验证明诱导细胞阳性表达人胰岛相关基因Pdx1和insulin;高糖刺激实验证明培养液中有胰岛素成分产生,且分泌量随刺激时间的延长先增加而后趋于稳定。实验结果表明hAMSCs在体外经RPE诱导可以分化为胰岛素分泌细胞。  相似文献   

10.
人胚胎干细胞有着巨大的医学应用前景,但人胚胎干细胞要求的生长条件很高,体外很难模拟其生长的体内环境,因此控制人胚胎干细胞的生长常不理想,而使用鼠胚胎成纤维细胞(MEF)作为滋养层则存在动物源性污染的问题。该文阐述人羊膜上皮细胞(HAEC)的特点及其作为滋养层培养胚胎干细胞的现状,并探讨基因组DNA甲基化修饰在胚胎干细胞分化过程中的作用,为建立更优化的培养系统提供依据。  相似文献   

11.
Tamagawa T  Ishiwata I  Saito S 《Human cell》2004,17(3):125-130
OBJECTIVES: Pluripotent stem cells are proposed to be used in regenerative therapy and may exist in the human amniotic membrane. The present article is aimed at establishing a pluripotent stem cell line from human placenta. METHODS: HAM-1 (stem cell line derived from human amniotic membranes) was established by the colonial cloning technique using aMEM culture medium containing 10 ng/ml of EGF, 10 ng/ml of hLIF and 10% fetal bovine serum. RESULTS: HAM-1 cells appeared to maintain a normal karyotype indefinitely in vitro and expressed markers characteristic of stem cells from mice and human, namely alkaline phosphatase. Also, these cells contributed to the formation of chimeric mouse embryoid bodies and gave rise to cells of all germ layers in vitro. CONCLUSIONS: This study demonstrates that human amniotic membranes derived stem cells have a wide developmental capability and might be utilized to regenerate different types of cells or tissues for transplantation therapy.  相似文献   

12.
Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.  相似文献   

13.
Summary We showed previously that sodium butyrate stimulated human chorionic gonadotropin (hCG) measured by radioimmunoassay of medium from human second trimester amniotic fluid cell cultures, termed AF cells. We now find that stimulation of hCG in the presence of sodium butyrate takes as long as 20 h. When AF cells are preincubated with sodium butyrate, hCG levels increase in direct relation to length of the preincubation period. These findings suggest that elevation of hCG is not due merely to a release of hormone from the cells. Addition of cycloheximide or Actinomycin D inhibited protein synthesis and RNA synthesis, respectively, and prevented the stimulation of hCG by sodium butyrate. These results lend support for a mechanism of regulation involving protein and RNA synthesis, the increase in hCG levels being due to new synthesis of the hormone. Other agents reported to influence hCG production by different types of cell cultures include dibutyryl cyclic AMP, epidermal growth factor (EGF), methotrexate, and hydroxyurea. Dibutyryl cyclic AMP and EGF have no effect on hCG production in our AF cells: methotrexate causes a minimal increase, hydroxyurea causes a further increase, but sodium butyrate has the strongest stimulatory effect. We conclude that amniotic fluid cells in culture are susceptible to environmental agents capable of modulating synthesis of hCG by mechanisms involving synthesis of RNA and protein. Research supported by Grant HD 11379 from the National Institutes of Health.  相似文献   

14.
15.
16.
Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immuno-histochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.  相似文献   

17.
Regulation and clinical implications of corneal epithelial stem cells   总被引:7,自引:0,他引:7  
The corneal epithelium is known to have a rapid self-renewing capacity. The major advance in the field of cornead epithelial cell biology in the last decade is the establishment of the location of corneal epithelial stem cells at the limbus, i.e., the junctional zone between the cornea and the conjunctiva. This concept has helped explain several experimental and clinical paradoxes, produced a number of important clinical applications, and spawned many other research studies. This unique enrichment of epithelial stem cells at a site anatomically separated from their transient amplifying cells makes the ocular surface an ideal model to study the regulation of epithelial stem cells. The present review includes data from more recent studies and lays out other areas for future investigation, especially with respect to the role of apoptosis and cytokine dialogue between limbal epithelial stem cells and their stromal microenvironment.Abbreviations EGF epidermal growth factor - EGFR epidermal growth factor receptor - bFGF basic fibroblast growth factor - HGF hepatocyte growth factor - IGF-I insulin-like growth factor type I - IL-1 interleukin 1 - K3 or K12 keratin type 3 or 12 - KGF keratinocyte growth factor - LIF leukemia inhibitory factor - PDGF platelet-derived growth factor - PKC protein kinase C - TGF- transforming growth factor- - TGF- transforming growth factor- - TPA phorbol ester tumor promoting agents  相似文献   

18.
The existing of basement membrane improves the development of endothelium while constructing blood vessel equivalent. The amniotic membrane (AM) provides a natural basement membrane and has been used in ocular surface reconstruction. This study evaluated the molecular and cellular characteristics of porcine vascular endothelial cells (ECs) cultured on AM. ECs cultured on AM expressed the endothelial marker vWF and exhibited normal endothelial morphology. Here, we demonstrated that AM enhanced the expression of intercellular molecules, platelet-endothelial cell adhesion molecule-1 (PECAM-1), and adhesion molecule VE-cadherin at the intercellular junctions. The expression level of integrin was markedly higher in ECs cultured on AM than on plastic dish. Furthermore, the AM downregulated the expression of E-selectin and P-selectin in both LPS-activated and non-activated ECs. Consistently, adhesion of leukocytes to both activated and non-activated cells was decreased in ECs cultured on AM. Our results suggest that AM is an ideal matrix to develop a functional endothelium in blood vessel equivalent construction.  相似文献   

19.
目的:通过体外诱导分化实验,探讨人羊膜上皮细胞(hAECs)向胰岛素分泌细胞(ISCs)分化的能力。方法:采用胰蛋白酶消化法从人羊膜组织分离提取hAECs,用流式细胞仪和免疫细胞化学法进行鉴定。取第3代hAECs在含尼克酰胺和N2补充物的无血清培养基中诱导培养,分别于诱导不同时间采用免疫细胞化学法检测胰岛素和β2微球蛋白的表达,采用放射免疫法检测上清液中胰岛素含量,采用RT-PCR检测胰岛素mRNA和胰十二指肠同源异型盒因子-1(PDX-1)mRNA的表达。结果:①hAECs高表达CD29、CD73、CD166和CK19;②hAECs诱导组第7、142、1天胰岛素阳性细胞百分率分别为74.00%±1.73%、75.33%±1.15%和75.67%±0.58%,而对照组未见胰岛素阳性细胞;③hAECs诱导组第7、14、21天培养物上清液中胰岛素含量分别达(328.47±3.22)μIU/ml、(332.26±1.22)μIU/ml和(329.68±2.57)μIU/ml,均显著高于对照组(P均<0.01);④hAECs诱导前后均有PDX-1 mRNA和β2微球蛋白表达,胰岛素mRNA表达仅见于诱导组。结论:hAECs能分化为ISCs,在Ⅰ型糖尿病细胞移植治疗方面具有潜在应用前景。  相似文献   

20.
There is growing evidence that the human amnion contains various types of stem cell. As amniotic tissue is readily available, it has the potential to be an important source of material for regenerative medicine. In this study, we evaluated the potential of human amnion-derived fibroblast-like (HADFIL) cells to differentiate into neural cells. Two HADFIL cell populations, derived from two different neonates, were analyzed. The expression of neural cell-specific genes was examined before and after in vitro induction of cellular differentiation. We found that neuron specific enolase, neurofilament-medium, beta-tubulin isotype III, and glial fibrillary acidic protein (GFAP) showed significantly increased expression following the induction of differentiation. In addition, immunostaining demonstrated that neuron specific enolase, GFAP and myelin basic protein (MBP) were present in HADFIL cells following the induction of differentiation, although one of the HADFIL cell populations showed a lower expression of GFAP and MBP. These results indicate that HADFIL cell populations have the potential to differentiate into neural cells. Although further studies are necessary to determine whether such in vitro-differentiated cells can function in vivo as neural cells, these amniotic cell populations might be of value in therapeutic applications that require human neural cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号