首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Ni3Al intermetallic alloys are produced by open inductive smelting with two different fluxes and subsequent centrifugal casting. The structure and phase composition of the alloys are investigated. Alloy samples undergo tensile tests at room temperature and elevated temperatures. The dependence of the structure and mechanical properties of the alloys on the smelting conditions is established.  相似文献   

2.
The Fe3Al iron aluminide alloyed by low concentrations of Nb and C (c Nb, c C) is studied. The influence of the c Nb/c C ratio on the structure and high-temperature yield strength of iron aluminide was investigated. The structure and phase composition were studied by scanning electron microscope equipped with EDS and EBSD. The strengthening mechanisms are detected as strengthening by incoherent precipitates of NbC and as a solid solution hardening by Nb atoms.  相似文献   

3.
The directional thermal expansion and elastic properties of Mo5Si3, (Mo0.8Nb0.2)5Si3, and (Mo0.85W0.15)5Si3 have been studied as a function of temperature through the use of single crystals. Thermal expansion anisotropy was reduced by Nb and W alloying. The decrease in thermal expansion anisotropy by Nb alloying was only found to occur at low temperatures, and thermal expansion anisotropy of (Mo0.8Nb0.2)5Si3 was similar to that for the other two compounds at 800 °C. Values for the polycrystalline Young’s, bulk, and shear moduli calculated from the measured single-crystal elastic constants are reduced by Nb alloying, and increased by W alloying at all temperatures studied. The elastic modulus E was calculated for the orientations between [100]-[001] and [100]-[010]. In contrast to the effects of Nb on thermal expansion anisotropy, Nb alloying increased the E [001]/E [100] elastic anisotropy. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

4.
We investigate by experimental and numerical methods the high-temperature synthesis of the Ni3Al intermetallic compound in the thermal explosion mode under the pressure of a powder mixture of nickel and aluminum of a stoichiometric composition. The calculated and experimental thermograms of self-propagating high-temperature synthesis are analyzed depending on the temperature of preliminary heating of the powder mixture and the magnitude of external pressure.  相似文献   

5.
The mechanism of impact fracture of soft magnetic amorphous alloy Fe73.5Cu1Nb3Si13.5B9 ribbons in a disintegrator after heat treatment at a temperature from the range 300–700°C and the fractional composition of the formed powder are studied. The temperature ranges of a change in the mechanism of ribbon fracture are determined. The particle size distribution is shown to change weakly within the revealed temperature ranges.  相似文献   

6.
The effect of severe plastic deformation (SPD) by torsion and subsequent annealing on the structure and magnetic properties of the cast Nd9.5Fe84.5B6 alloy is studied. SPD by torsion is shown to lead to partial amorphization of the Nd2Fe14B phase and the precipitation of α-Fe; subsequent annealing results in the crystallization of the amorphous phase and the formation of a nanocomposite Nd2Fe14B/α-Fe structure. After SPD by torsion at 20 revolutions and annealing at 873 K, the (101) texture is formed; in this case, the coercive force is H c = 360 kA/m and the maximum energy product is (BH) max = 166 kJ/m3. The residual magnetization and the squareness ratio of the hysteretic loop of the textured alloy decrease as the ambient temperature decreases.  相似文献   

7.
Thin ribbons of the metallic glass Mg65Cu25Y10, obtained by spinning, were saturated with atomic hydrogen from electrochemical decomposition of water. The maximum amount of absorbed hydrogen was 4 mass %. The hydrogen content was determined by hot extraction. We studied the microstructure of samples with different hydrogen contents by x-ray phase analysis (from the change in the diffuse maximum), atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. When the hydrogen content increases up to 3.6 mass %, the amorphous structure of the Mg65Cu25Y10 alloy is converted to a nanocrystalline structure, with formation of magnesium and yttrium hydrides at room temperature.  相似文献   

8.
The effect of planar flow melt spinning (PFMS) parameters on the continuity, surface quality, and structure of 10-mm-wide Fe68.5Si18.5B9Nb3Cu1 ribbons has been investigated. The change in shape and stability of the melt puddle as a function of the processing parameter was studied using a high-speed imaging system and was correlated to ribbon formation. A window of process parameters for obtaining continuous ribbons with good surface quality has been evaluated. It has been observed that thinner ribbons are found to be more continuous because of higher ductility. The higher melt temperature leads to the formation of crystalline phase in as-spun ribbons, and this deteriorates the soft magnetic properties on annealing. The experimental results are corroborated with the numerical estimates, which suggest that the critical thickness for amorphous phase formation decreases with increasing initial melt temperature.  相似文献   

9.
The Pt-Al system has high potential to act as alloy base for so-called refractory superalloys. Although the envisaged strengthening phase Pt3Al(r) has favorable L12 crystal structure only at high temperatures, even small amounts of Sc stabilized L12 crystal structure at low temperature. Pt-Al-Sc alloys were arc melted, heat treated, and examined by means of scanning electron microscopy and X-ray diffraction (XRD). Pt3Al1−x Sc x (r) forms a continuous phase field from the Al-rich side to the Sc-rich side of the Pt-Al-Sc ternary system. The absolute value of the lattice misfit between cubic Pt3Al1−x Sc x (r) and the matrix decreases with increasing Sc content.  相似文献   

10.
An attempt is made to find the effect of a hereditary structure on the physicochemical and structural properties of a solid and liquid Fe50Cr15Mo14C15B6 bulk-amorphous alloy in order to evaluate the possibility of using a precursor, i.e., a solid metal that has a genetic relation to the liquid phase, as an the initial metal of a heat involved in the formation of an amorphous structure. The structural state of the melt is estimated from the temperature dependence of the structural parameters, density, and surface tension with allowance for the validation criterion of the approximation of experimental points R 2.  相似文献   

11.
The oxidation behavior of a cast nickel aluminide alloy, IC221M, was examined after long-term aging in air for up to 16,600 hours at 900 °C and 5000 hours at 1100 °C. The oxidation products were identified using X-ray diffraction and energy-dispersive X-ray (EDX) spectroscopy with multivariate statistical analysis. At 900 °C, NiO dominates the oxidation products initially, but at longer times, NiAl2O4 spinel and Al2O3 predominate and remain stable for times up to 16,600 hours. Cross-sectional observation confirmed that a continuous surface oxide that is mostly a mixture of Al2O3 and NiAl2O4 protects the base metal. In its initial stages, the oxidation process at 1100 °C is qualitatively similar to that at 900 °C but with faster kinetics. However, as aging proceeds, NiO spalls freely from the surface, and a protective continuous oxide scale does not form. The oxidation mechanism can be qualitatively understood by the selective oxidation mechanism maps developed by Giggins and Pettit. An erratum to this article is available at .  相似文献   

12.
The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above ∼1000 °C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely, boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12 to 17 at. pct Si, 8.5 at. pct B, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (“pesting”), fracture toughness, and fatigue-crack propagation resistance of four such alloys, which consisted of ∼21 to 38 vol. pct α-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 °C and 1300 °C. The boron additions were found to confer improved “pest” resistance (at 400 °C to 900 °C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover, although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the α-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa √m at ambient temperatures to almost 12 MPa √m at 1300 °C. Similarly, the fatigue-crack propagation resistance was significantly better than that of MoSi2, with fatigue threshold values roughly 70 pct of the toughness, i.e., rising from over 5 MPa √m at 25 °C to ∼8 MPa √m at 1300 °C. These results, in particular, that the toughness and cyclic crack-growth resistance actually increased with increasing temperature, are discussed in terms of the salient mechanisms of toughening in Mo-Si-B alloys and the specific role of microstructure.  相似文献   

13.
14.
15.
Thin ribbons of the metallic glass Mg65Cu25Y10, obtained by spinning, were saturated with atomic hydrogen from electrochemical decomposition of water. The maximum amount of absorbed hydrogen was 4 mass %. The hydrogen content was determined by hot extraction. We studied the microstructure of samples with different hydrogen contents by x-ray phase analysis (from the change in the diffuse maximum), atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. When the hydrogen content increases up to 3.6 mass %, the amorphous structure of the Mg65Cu25Y10 alloy is converted to a nanocrystalline structure, with formation of magnesium and yttrium hydrides at room temperature.  相似文献   

16.
Pure nanocrystalline hematite (40 to 100 nm) compacts were prepared and sintered at various temperatures (300 °C to 600 °C) and then reduced with 100 pct H2 at 500 °C. On the other hand, fired compacts at 500 °C were reduced with a H2-Ar gas mixture containing different concentration of hydrogen (100, 75, 50, and 25 pct) at 500 °C using thermogravimetric techniques. Nanocrystalline Fe2O3 compacts were characterized before and after reduction with X-ray diffraction, scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and reflected light microscope. It was found that the fired compacts at 400 °C to 600 °C have relatively faster reaction behaviors compared to that at lower firing temperature 300 °C. By decreasing the firing temperature to 300 °C, partial sintering with grain growth was observed clearly during reduction. Also, it was found that the reduction rate increased with increasing hydrogen content in the reducing gas. Comparatively, grain growth and partial coalescence took place during reduction with 25 pct H2 due to long reaction time.
M. BAHGAT (Researcher)Email:
  相似文献   

17.
A stack of alternating 25 100-μ-thick Ni3Al plates and 28 200-μm-thick Mo plates is subjected to hot isostatic pressing (HIP) at a temperature T = 1200°C and a pressure P = 150 MPa for τ = 2.5 h followed by hot rolling at 1050–950°C to a thickness of 2.3 mm. The stack is then subjected to cold rolling (CR) to a thickness of 0.5 mm without intermediate annealing, subsequent annealing during HIP at T = 1200°C, P = 150 MPa, and τ = 2.5 h, and CR to a thickness of 0.22 mm. Upon CR at a strain ε changing from 80.8 to 95.8%, the following specific structure forms in the longitudinal direction: molybdenum layers acquire a wavelike structure, can contact with each other, form “cells,” and retain almost the same thickness, and Ni3Al alloy layers are rejected between the molybdenum layers to form a regular structure made of alternating thickenings and thinnings across the rolling direction. Annealing during HIP and subsequent CR to ε = 98.2% lead to the formation of zones with a broken alternation of layers in the longitudinal and transverse directions, which is related to different strain resistances of the (more refractory) molybdenum and Ni3Al layers at 20°C. The adhesion between the layers is good, and no intermediate phases form at the interface. The ultimate bending strength of the 2.3-mm-thick workpiece at 20°C is 1000 ± 100 MPa, and the prepared material has a plasticity margin.  相似文献   

18.
The structure and phase composition of a VKNA-25 alloy based on the Ni3Al intermetallic compound, produced by directional solidification, and alloyed with rare-earth metals are studied in the following two states: after annealing at 1100°C and after creep at 1100°C.  相似文献   

19.
Corrosion tests of 316L and two intermetallic compounds Fe3Al and FeCrSi in industrial Galvanizing (Zn-0.18Al), GALFAN (Zn-5Al), GALVALUME (Zn-55Al), and Aluminizing (Al-8Si) baths and lab-scale static baths were conducted. In on-line tests in industrial hot-dip baths, 316L steel shows better corrosion resistance than Fe3Al in Galvanizing, GALFAN, and GALVALUME baths. The corrosion resistance of 316L and Fe3Al is similar in Aluminizing bath. In static tests, FeCrSi shows the best corrosion resistance in pure Zn, Zn-55Al, and Al-8Si baths. The corrosion resistance of 316L is better than that of Fe3Al. In Zn-5Al bath, 316L shows no thickness loss after the test. For the same bath composition, the corrosion rates of the alloys in industrial baths are higher than those in static baths. Bath temperature and chemical composition play important roles in corrosion and intermetallic layer formation. Increasing bath temperature accelerates the corrosion process and changes the nature of intermetallic layers. A small amount of aluminum reduces the corrosion process by reducing the activity of Zn and forming inhibition layer. However, after aluminum content reaches the critical point, the dominant corrosion process changes from Zn-Fe reaction to Al-Fe reaction, and, consequently, the corrosion process accelerates by increasing aluminum content in the bath.  相似文献   

20.
Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号